CN: 32-1845/R
ISSN: 2095-6975
Cite this paper:
0
XU Yao-Hao, LI Wei, RAO Yong, HUANG Zhi-Shu, YIN Sheng. Pyridocarbazole alkaloids from Ochrosia borbonica: li-pid-lowering agents inhibit the cell proliferation and adipogenesis of 3T3-L1 adipocyte via intercalating into supercoiled DNA[J]. Chinese Journal of Natural Medicines, 2019, 17(9): 663-671

Pyridocarbazole alkaloids from Ochrosia borbonica: li-pid-lowering agents inhibit the cell proliferation and adipogenesis of 3T3-L1 adipocyte via intercalating into supercoiled DNA

XU Yao-Hao, LI Wei, RAO Yong, HUANG Zhi-Shu, YIN Sheng
Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
Abstract:
Bioassay-guided fractionation of an ethanolic extract of Ochrosia borbonica led to the isolation of two known pyridocarbazole alkaloids, ellipticine (1) and 9-methoxyellipticine (2), and six known monoterpenoid indole alkaloids (3-8). Lipid-lowering assay in 3T3-L1 cell model revealed that 1 and 2 could significantly inhibit the lipid droplet formation (EC50=0.41 and 0.92 μmol·L-1, respectively) and lower triglyceride levels by 50%-60% at the concentration of 1 μmol·L-1, being more potent than the positive drug luteolin (EC50=2.63 μmol·L-1). A mechanistic study indicated that 1 and 2 could intercalate into supercoiled DNA, which consequently inhibited the mitotic clonal expansion of 3T3-L1 cells at the early differentiation phase, leading to the retardance of following adipogenesis and lipogenesis. These findings suggest that 1 and 2 may serve as promising leads for further development of anti-obesity drugs.
Key words:    Ochrosia borbonica    Pyridocarbazole alkaloids    Lipid-lowering agents   
Received: 2019-04-28   Revised:
Tools
PDF (5782 KB) Free
Print this page
Email this article to others
Authors
Articles by XU Yao-Hao
Articles by LI Wei
Articles by RAO Yong
Articles by HUANG Zhi-Shu
Articles by YIN Sheng
References:
[1] Pollack A. AMA recognizes obesity as a disease[EB/OL]. (2013-Jun.-19)[2018-Jul.-02]. http://www.nytimes.com/2013/06/19/business/ama-recognizesobesity- as-a-disease.html
[2] Eckel RH, Alberti K, Grundy SM, et al. The metabolic syndrome[J]. The Lancet, 2010, 375(9710):181-183.
[3] Collaborators GO. Health effects of overweight and obesity in 195 countries over 25 years[J]. N Engl J Med, 2017, 377(1):13-27.
[4] Greenway FL, Bray GA. Combination drugs for treating obesity[J]. Curr Diabetes Rep, 2010, 10(2):108-115.
[5] Kaplan LM. Pharmacologic therapies for obesity[J]. Gastroenterol Clin North Am, 2010, 39(1):69-79.
[6] Bray GA, Frühbeck G, Ryan DH, et al. Management of obesity[J]. Lancet, 2016, 387(10031):1947-1956.
[7] Vermaak I, Viljoen AM, Hamman JH. Natural products in anti-obesity therapy[J]. Nat prod Rep, 2011, 28(9):1493-1533.
[8] Al DLG, Milagro FI, Boque N, et al. Natural inhibitors of pancreatic lipase as new players in obesity treatment[J]. Planta Med, 2011, 77(8):773-785.
[9] Rao Y, Yu H, Gao L, et al. Natural alkaloid bouchardatine ameliorates metabolic disorders in high-fat diet-fed mice by stimulating the sirtuin 1/liver kinase B-1/AMPK axis[J]. Br J Pharmacol, 2017, 174(15):2457-2470.
[10] Flora of China Editorial Committee. Flora of China[M]. Beijing:Science Press. 1977, 63:39.
[11] Svoboda GH, Poore GA, Montfort ML. Alkaloids of Ochrosia maculata Jacq. (Ochrosia borbonica Gmel.). Isolation of the alkaloids and study of the antitumor properties of 9-methoxyellipticine[J]. J Pharm Sci, 1968, 57(10):1720-1725.
[12] Zhang BJ, Yan JM, Wu ZK, et al. Alkaloids from Ochrosia borbonica[J]. Helv Chim Acta, 2013, 96(12):2288-2298.
[13] Liu YP, Huang LG, Li KK, et al. Studies on non-alkaloid constituents from Ochrosia borbonica[J]. Chin Tradit Herb Drugs, 2015, 46(6):798-802.
[14] Ahond A, Popat C, Potier P. Étude par rm13c d'alcaloïdes à squelette acridinone 9(10h) et pyrido(4, 3b) carbazole(6h)[J]. Tetrahedron, 1978, 34(15):2385-2388.
[15] Van Beek TA, Verpoorte R, Svendsen AB. Isolation and synthesis of vobparicine, a novel type dimeric indole alkaloid[J]. Tetrahedron Lett, 1984, 25(19):2057-2060.
[16] Akhter L, Brown RT, Moorcroft D. 10-Hydroxy- and 10-methoxyapparicine:two new alkaloids from Ochrosia oppositifolia[J]. Tetrahedron Lett, 1978, 19(43):4137-4140.
[17] Sauerwein M, Shimomura K. 17α-O-methylyohimbine and vallesiachotamine from roots of Amsonia elliptica[J]. Phytochemistry, 1990, 29(10):3377-3379.
[18] Cancelieri NM, Vieira IJC, Mathias L, et al. 1H and 13C NMR structure determination of a new stereoisomer of isoreserpiline pseudoindoxyl from Rauvolfia grandiflora[J]. Magn Reson Chem, 2003, 41(4):287-290.
[19] Gunatilaka AAL, Fernando HC, Atta Ur R, et al. Neiso-sposinine:a new oxindole alkaloid from Neisosperma oppositifolia[Apocynaceae] [J]. Heterocycles, 1989, 28(2):999-1005.
[20] Tang QQ, Lane MD. Adipogenesis:from stem cell to adipocyte[J]. Annu Rev Biochem, 2012, 81:715-736.
[21] Zeng XY, Zhou X, Xu J, et al. Screening for the efficacy on lipid accumulation in 3T3-L1 cells is an effective tool for the identification of new anti-diabetic compounds[J]. Biochem Pharmacol, 2012, 84(6):830-837.
[22] Kuo PL, Hsu YL, Chang CH, et al. The mechanism of ellipticine-induced apoptosis and cell cycle arrest in human breast MCF-7 cancer cells[J]. Cancer Lett, 2005, 223(2):293-301.
[23] Stiborová M, Frei E. Ellipticines as DNA-targeted chemotherapeutics[J]. Curr Med Chem, 2014, 21(5):575-591.
[24] Jacobsen RG, Mazloumi Gavgani F, Mellgren G, et al. DNA topoisomerase Ⅱ contributes to the early steps of adipogenesis in 3T3-L1 cells[J]. Cell Signal, 2016, 28(10):1593-1603.
[25] Hsiang YH, Lihou MG, Liu LF. Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin[J]. Cancer Res, 1989, 49(18):5077-5082.
[26] Baldwin EL, Osheroff N. Etoposide, topoisomerase Ⅱ and cancer[J]. N Curr Med Chem Anticancer Agents, 2005, 5(4):363-372.