CN: 32-1845/R
ISSN: 2095-6975
Cite this paper:
0
LI Ting-Ting, WANG Zhi-Bin, LI Yang, CAO Feng, YANG Bing-You, KUANG Hai-Xue. The mechanisms of traditional Chinese medicine underlying the prevention and treatment of atherosclerosis[J]. Chinese Journal of Natural Medicines, 2019, 17(6): 401-412

The mechanisms of traditional Chinese medicine underlying the prevention and treatment of atherosclerosis

LI Ting-Ting, WANG Zhi-Bin, LI Yang, CAO Feng, YANG Bing-You, KUANG Hai-Xue
Key Laboratory of Chinese Materia Medica(Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, China
Abstract:
Atherosclerosis (AS) is a chronic inflammatory disease associated with high morbidity and mortality. The incidence of AS is increasing in the last decades. So development of safe and effective therapeutics for treating AS has become prominently important. Although there are numerous chemical drugs available for treating AS, some drugs are not effective and some have serious side effects. Traditional Chinese medicine (TCM) has a long history for the prevention and treatment of AS due to its less side effects and superior efficacy. This paper describes the effectiveness and underlying mechanisms for prevention and treatment of AS by TCM or its active components. Some TCM, e.g. XuemaiNing, Tongxinluo and Salvia miltiorrhiza have been reported to have car-dio-protective effect. Some active components of TCM, e.g. saikosaponin-A, kuwanon G, luteolin and β-elemene have been isolated from various TCM and demonstrated to have beneficial effects on prevention and treatment of AS.
Key words:    Atherosclerosis    Traditional Chinese medicine    Mechanism   
Received: 2019-02-14   Revised:
Tools
PDF (1591 KB) Free
Print this page
Email this article to others
Authors
Articles by LI Ting-Ting
Articles by WANG Zhi-Bin
Articles by LI Yang
Articles by CAO Feng
Articles by YANG Bing-You
Articles by KUANG Hai-Xue
References:
[1] Pescetelli I, Zimarino M, Ghirarduzzi A, et al. Localizing factors inatherosclerosis[J]. J Cardiovasc Med, 2015, 16(12):824-830.
[2] Geraci G, Mulè G, Mogavero M, et al. Renal haemodynamics and severity of carotid atherosclerosis in hypertensive patients with and without impaired renal function[J]. Nutr Metab Cardiovasc Dis, 2015, 25(2):160-166.
[3] Wang C, Niimi M, Watanabe T, et al. Treatment of atherosclerosis by traditional Chinese medicine:Questions and quandaries[J]. Atherosclerosis, 2018, ATH 15685.
[4] Chistiakov DA, Orekhov AN, Bobryshev YV. Contribution of neovascularization and intraplaque haemorrhage to atherosclerotic plaque progression and instability[J]. Acta Physiol (Oxf), 2015, 213(3):539-553.
[5] Qian WD, Fang ZY, Hai LU. Research progress on the intervention of atherosclerotic vulnerable plaque rupture with traditional Chinese medicine[J]. J Tradit Chin Med, 2014, 29(6):1935-1937.
[6] Liu HY, Zhou J, Tong H, et al. Quantitative evaluation of atherosclerotic plaques and intraplaque neovascularization using contrast-enhanced ultrasound after treatment with atorvastatin in rabbits[J]. Biomed Pharmacother, 2017, 92:277-284.
[7] Sun BB, Zhao HL, Li X, et al. Angiotensin Ⅱ-accelerated vulnerability of carotid plaque in a cholesterol-fed rabbit model-assessed with magnetic resonance imaging comparing to histopathology[J]. Saudi J Biol Sci, 2017, 24(3):495-503.
[8] Chistiakov DA, Bobryshev YV, Nikiforov NG, et al. Macrophage phenotypic plasticity in atherosclerosis:the associated features and the peculiarities of the expression of inflammatory genes[J]. Int J Cardiol, 2015, 184:436-445.
[9] Danoff A, Kendall MA, Currier JS, et al. Soluble levels of receptor for advanced glycation endproducts (RAGE) and progression of atherosclerosis in individuals infected with human immunodeficiency virus:ACTG NWCS 332[J]. Inflammation, 2016, 39(4):1354-1362.
[10] Zhao LY, Li J, Yuan F, et al. Xyloketal B attenuates atherosclerotic plaque formation and endothelial dysfunction in apolipoprotein e deficient mice[J]. Mar Drugs, 2015, 13(4):2306-2326.
[11] Zhang L, Liu Y, Lu XT, et al. Intraplaque injection of Ad5-CMV. p53 aggravates local inflammation and leads to plaque instability in rabbits[J]. J Cell Mol Med, 2009, 13(8b):2713-2723.
[12] Husain K, Hernandez W, Ansari RA, et al. Inflammation, oxidative stress and renin angiotensin system in atherosclerosis[J]. World J Biol Chem, 2015, 6(3):209.
[13] Shindo A, Tanemura H, Yata K, et al. Inflammatory biomarkers in atherosclerosis:pentraxin 3 can become a novel marker of plaque vulnerability[J]. PLoS One, 2014, 9(6):e100045.
[14] Wang L, Chen QW, Ke DZ, et al. Ghrelin inhibits atherosclerotic plaque angiogenesis and promotes plaque stability in a rabbit atherosclerotic model[J]. Peptides, 2017, 90:17-26.
[15] Perrotta I, Aquila S. The role of oxidative stress and autophagy in atherosclerosis[J]. Oxid Med Cell Longev, 2015, 2015:130315.
[16] Li H, Horke S, FãRstermann U. Vascular oxidative stress, nitric oxide and atherosclerosis[J]. Atherosclerosis, 2014, 237(1):208-219.
[17] Ketelhuth DFJ, Bäck M. The role of matrix metalloproteinases in atherothrombosis[J]. Curr Atheroscler Rep, 2011, 13(2):162.
[18] Wang HW. Clinical efficacy of statins-drugs combined with aspirin in the treatment of patients with acute ischemic stroke[J]. China Med Pharmacy, 2016, 19.
[19] Amirkia V, Heinrich M. Natural products and drug discovery:a survey of stakeholders in industry and academia[J]. Front Pharmacol, 2015, 6:237.
[20] Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis[J]. Cell, 2011, 145(3):341-355.
[21] Pyka-Fosciak G, Jawien J, Gajda M, et al. Effect of nebivolol treatment on atherosclerotic plaque components in apoE-knockout mice[J]. J Physiol Pharmacol, 2013, 64(6):745-750.
[22] Moriya J. Critical roles of inflammation in atherosclerosis[J]. J Cardiol, 2018, 6:JJCC1688.
[23] Soehnlein O, Drechsler M, Döring Y, et al. Distinct functions of chemokine receptor axes in the atherogenic mobilization and recruitment of classical monocytes[J]. EMBO Mol Med, 2013, 5(3):471-481.
[24] Cochain C, Zernecke A. Macrophages and immune cells in atherosclerosis:recent advances and novel concepts[J]. Basic Res Cardiol, 2015, 110(4):34.
[25] Theodorou K, Wu Y, Hoeksema MA, et al. High-density lipoproteins exert pro-inflammatory effects on macrophages via passive cholesterol depletion and PKC-NF-κB/STAT1-IRF1 signaling[J]. Cell Metab, 2017, 25(1):197-207.
[26] Guo MQ, Xiao J, Sheng X, et al. Ginsenoside Rg3 mitigates atherosclerosis progression in diabetic ApoE-/-Mice by Skewing Macrophages to the M2 Phenotype[J]. Front Pharmacol, 2018, 9:464.
[27] Mallavia B, Recio C, Oguiza A, et al. Peptide inhibitor of NF-κB translocation ameliorates experimental atherosclerosis[J]. Am J Pathol, 2013, 182(5):1910-1921.
[28] Li J, Lei HT, Cao L, et al. Crocin alleviates coronary atherosclerosis via inhibiting lipid synthesis and inducing M2 macrophage polarization[J]. Int Immunopharmacol, 2018, 55:120-127.
[29] Jansen MF, Hollander MR, van Royen N, et al. CD40 in coronary artery disease:a matter of macrophages?[J]. Basic Res Cardiol, 2016, 111(4):38.
[30] Han BH, Yoon JJ, Choi ES, et al. Inhibitory effect of brassinin on TNF α induced vascular inflammation in human umbilical vein endothelial cells[J]. Mol Med Rep, 2017, 16(5):6890-6895.
[31] Xiao J, Zhu T, Yin YZ, et al. Notoginsenoside R1, a unique constituent of Panax notoginseng, blinds proinflammatory monocytes to protect against cardiac hypertrophy in ApoE-/- mice[J]. Eur J Pharmacol, 2018, 833:441-450.
[32] Jiang XS, Ni YS, Liu TJ, et al. CCR2 overexpression promotes the efficient recruitment of retinal microglia in vitro[J]. Mol Vis, 2012, 18:2982.
[33] Bobryshev YV, Ivanova EA, Chistiakov DA, et al. Macro-phages and their role in atherosclerosis:pathophysiology and transcriptome analysis[J]. Biomed Res Int, 2016, 2016(5):1-13.
[34] Shiu SWM, Tan KCB, Ying W, et al. Glycoxidized LDL increases lectin-like oxidized low density lipoprotein receptor-1 in diabetes mellitus[J]. Atherosclerosis, 2009, 203(2):522-527.
[35] Miller YI, Choi SH, Wiesner P, et al. Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity[J]. Circ Res, 2011, 108(2):235-248.
[36] Moore KJ, Freeman MW. Scavenger receptors in atherosclerosis:beyond lipid uptake[J]. Arterioscler Thromb Vasc Biol, 2006, 26(8):1702-1711.
[37] Febbraio M, Guy E, Silverstein RL. Stem cell transplantation reveals that absence of macrophage CD36 is protective against atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2004, 24(12):2333-2338.
[38] Zhao JF, Ching LC, Huang YC, et al. Molecular mechanism of curcumin on the suppression of cholesterol accumulation in macrophage foam cells and atherosclerosis[J]. Mol Nutr Food Res, 2012, 56(5):691-701.
[39] Babaev VR, Runner RP, Fan DP, et al. Macrophage mal1 deficiency suppresses atherosclerosis in low-density lipoprotein receptor-null mice by activating peroxisome proliferator-activated receptor-γ-regulated genes[J]. Arterioscler Thromb Vasc Biol, 2011, 31(6):1283-1290.
[40] Gisterå A, Hansson GK. The immunology of atherosclerosis[J]. Nat Rev Nephrol, 2017, 13(6):368.
[41] Vilahur G, Badimon L. Biological actions of pentraxins[J]. Vascul Pharmacol, 2015, 73:38-44.
[42] Jia F, Wu CF, Chen ZY, et al. Atorvastatin attenuates atherosclerotic plaque destabilization by inhibiting endoplasmic reticulum stress in hyperhomocysteinemic mice[J]. Mol Med Rep, 2016, 13(4):3574-3580.
[43] Zhang MY, He JH, Jiang CP, et al. Plaque-hyaluronidase-responsive high-density-lipoprotein-mimetic nanoparticles for multistage intimal-macrophage-targeted drug delivery and enhanced anti-atherosclerotic therapy[J]. Int J Nanomedicine, 2017, 12:533.
[44] Ignatova ID, Schulman IG. Liver X receptors and atherosclerosis:it is not all cholesterol[J]. Arterioscler Thromb Vasc Biol, 2014, 34(2):242-3.
[45] Abbas GM, Abdel Bar FM, Baraka HN, et al. A new antioxidant stilbene and other constituents from the stem bark of Morus nigra L.[J]. Nat Prod Res, 2014, 28(13):952-959.
[46] Liu XX, Zhang XW, Wang K, et al. Kuwanon G attenuates atherosclerosis by upregulation of LXRα-ABCA1/ABCG1 and inhibition of NF-κB activity in macrophages[J]. Toxicol Appl Pharmacol, 2018, 341:56-63.
[47] Chen M, Chen HX, Zhang L. Xuemai Ning treated blood dyslipidemia clinical research[J]. J Tradit Chin Med, 2010, 37(5):803-805.
[48] Chen M. Effects of Chinese herbal compound "Xuemai Ning" on rabbit atherosclerosis model and expression of ABCA1[J]. Int J Biomed Sci, 2013, 9(3):153.
[49] He D, Wang HY, Xu L, et al. Saikosaponin-a attenuates oxidized LDL uptake and prompts cholesterol efflux in THP-1 cells[J]. J Cardiovasc Pharmacol, 2016, 67(6):510-518.
[50] Yu C, Qi D, Lian W, et al. Effects of danshensu on platelet aggregation and thrombosis:in vivo arteriovenous shunt and venous thrombosis models in rats[J]. PLoS One, 2014, 9(11):e110124.
[51] Lin TH, Hsieh CL. Pharmacological effects of Salvia miltiorrhiza (Danshen) on cerebral infarction[J]. Chin Med, 2010, 5(1):22.
[52] Gao H, Li LY, Li L, et al. Danshensu promotes cholesterol efflux in RAW264. 7 macrophages[J]. Lipids, 2016, 51(9):1083-1092.
[53] Lacolley P, Regnault V, Nicoletti A, et al. The vascular smooth muscle cell in arterial pathology:a cell that can take on multiple roles[J]. Cardiovasc Res, 2012, 95(2):194-204.
[54] Sun LQ, Zhao MM, Liu AH, et al. Shear stressinduces phenotypic modulation of vascular smooth muscle cells via AMPK/mTOR/ULK1-mediated autophagy[J]. Cell Mol Neurobiol, 2017, 38(10):1-8.
[55] Kockx MM, Knaapen MW. Pathological changes in the coronary arteries in the acute coronary syndromes[J]. Heart, 2006, 92(11):1557-1558.
[56] Simon F, Oberhuber A, Floros N, et al. Pathophysiology of chronic limb ischemia[J]. Gefässchirurgie, 2018, 23(S1):13-18.
[57] Luo YY, Shang PP, Li DY. Luteolin:A flavonoid that has multiple cardio-protective effects and its molecular mechanisms[J]. Front Pharmacol, 2017, 8:692.
[58] Jia ZQ, Nallasamy P, Liu DM, et al. Luteolin protects against vascular inflammation in mice and TNF-alpha-induced monocyte adhesion to endothelial cells via suppressing IΚBα/NF-κB signaling pathway[J]. J Nutr Biochem, 2015, 26(3):293-302.
[59] Nile SH, Keum YS, Nile AS, et al. Antioxidant, anti-inflammatory, and enzyme inhibitory activity of natural plant flavonoids and their synthesized derivatives[J]. J Biochem Mol Toxicol, 2018, 32(1):e22002.
[60] Xu TD, Zhu H, Li DY, et al. Luteolin inhibits angiotensin Ⅱ-stimulated VSMC proliferation and migration through downregulation of Akt phosphorylation[J]. Evid Based Complement Alternat Med, 2015, 2015(1):931782.
[61] Guo J, Dhaliwall JK, Chan KK, et al. In vivo effect of insulin to decrease matrix metalloproteinase-2 and -9 activity after arterial injury[J]. J Vasc Res, 2013, 50(4):279-288
[62] Wu YT, Chen L, Tan ZB, et al. Luteolin inhibits vascular smooth muscle cell proliferation and migration by inhibiting TGFBR1 signaling[J]. Front Pharmacol, 2018, 9:1509.
[63] Ren S, Zhang H, Mu YP, et al. Pharmacological effects of Astragaloside IV:a literature review[J]. J Tradit Chin Med, 2013, 33(3):413-416.
[64] Donovan J, Abraham D, Norman J. Platelet-derived growth factor signaling in mesenchymal cells[J]. Front Biosci (Landmark Ed), 2013, 18(1):106-119.
[65] Martin-Garrido A, Williams HC, Lee M, et al. Transforming growth factor β inhibits platelet derived growth factor-induced vascular smooth muscle cell proliferation via Akt-independent, Smad-mediated cyclin D1 downregulation[J]. PLoS One, 2013, 8(11):e79657.
[66] Chen Z, Cai Y, Zhang WL, et al. Astragaloside IV inhibits platelet derived growth factor BB stimulated proliferation and migration of vascular smooth muscle cells via the inhibition of p38 MAPK signaling[J]. Exp Ther Med, 2014, 8(4):1253-1258.
[67] Sinha K, Das J, Pal PB, et al. Oxidative stress:the mitochondria-dependent and mitochondria-independent pathways of apoptosis[J]. Arch Toxicol, 2013, 87(7):1157-1180.
[68] Yang XY, Li Y, Li YD, et al. Oxidative stress-mediated atherosclerosis:mechanisms and therapies[J]. Front Physiol, 2017, 8:600.
[69] Panth N, Paudel K R, Parajulibaral K. Reactive oxygen species:A key hallmark of cardiovascular disease[J]. Adv Med, 2016, 2016(5):9152732.
[70] Tousoulis D, Psaltopoulou T, Androulakis E, et al. Oxidative stress and early atherosclerosis:novel antioxidant treatment[J]. Cardiovasc Drugs Ther, 2015, 29(1):75-88.
[71] Ramos S. Cancer chemoprevention and chemotherapy:dietary polyphenols and signalling pathways[J]. Mol Nutr Food Res, 2008, 52(5):507-526.
[72] Lai HTM, Threapleton DE, Day AJ, et al. Fruit intake and cardiovascular disease mortality in the UK Women's Cohort Study[J]. Eur J Epidemiol, 2015, 30(9):1035-1048.
[73] Pala D, Barbosa PO, Silva CT, et al. Açai (Euterpe oleracea Mart.) dietary intake affects plasma lipids, apolipoproteins, cholesteryl ester transfer to high-density lipoprotein and redox metabolism:A prospective study in women[J]. Clin Nutr, 2018, 37(2):618-623.
[74] Sheen JM, Cheng YC, Hu WL, et al. Polyphenols and oxidative stress in atherosclerosis-related ischemic heart disease and stroke[J]. Oxid Med Cell Longev, 2017, 2017(5):8526438.
[75] Salisbury D, Bronas U. Reactive oxygen and nitrogen species:impact on endothelial dysfunction[J]. Nurs Res, 2015, 64(1):53-66.
[76] Liu M, Chen XT, Ma J, et al. β-Elemene attenuates atherosclerosis in apolipoprotein E-deficient mice via restoring NO levels and alleviating oxidative stress[J]. Biomed Pharmacother, 2017, 95:1789-1798.
[77] Singh U, Jialal I. Oxidative stress and atherosclerosis[J]. Pathophysiology, 2006, 13(3):129-142.
[78] Luo Y, Lu S, Dong X, et al. Dihydromyricetin protects human umbilical vein endothelial cells from injury through ERK and Akt mediated Nrf2/HO-1 signaling pathway[J]. Apoptosis, 2017, 22(8):1013-1024.
[79] Gerber BL. In vivo evaluation of atherosclerotic plaque inflammation and of anti-inflammatory effects of statins by 18 F-fluorodeoxyglucose positron emission tomography[J]. J Am Coll Cardiol, 2013, 62(10):918-920.
[80] Gatica D, Chiong M, Lavandero S, et al. Molecular mechanisms of autophagy in the cardiovascular system[J]. Circ Res, 2015, 116(3):456-467.
[81] Nussenzweig SC, Verma S, Finkel T. The role of autophagy in vascular biology[J]. Circ Res, 2015, 116(3):480-488.
[82] Wang Dw, Yu WQ, Liu YT, et al. Roles of autophagy in ischemic heart diseases and the modulatory effects of Chinese herbal medicine[J]. Am J Chin Med, 2017, 45(7):1401-1419.
[83] Liao XH, Sluimer J C, Wang Y, et al. Macrophage autophagy plays a protective role in advanced atherosclerosis[J]. Cell Metab, 2012, 15(4):545-553.
[84] Qiao L, Zhang X, Liu MH, et al. Ginsenoside Rb1 enhances atherosclerotic plaque stability by improving autophagy and lipid metabolism in macrophage foam cells[J]. Front Pharmacol, 2017, 8:727.
[85] Grootaert MOJ, Schrijvers D M, Hermans M, et al. Caspase-3 deletion promotes necrosis in atherosclerotic plaques of ApoE knockout, mice[J]. Oxid Med Cell Longev, 2016, 2016(3):1-11.
[86] Hao PP, Jiang F, Cheng J, et al. Traditional Chinese medicine for cardiovascular disease:evidence and potential mechanisms[J]. J Am Coll Cardiol, 2017, 69(24):2952-2966.
[87] Chen YF, Li MM, Zhang Y, et al. Traditional Chinese medication Tongxinluo attenuates apoptosis in ox-LDL-stimulated macrophages by enhancing Beclin-1-induced autophagy[J]. Biochem Biophys Res Commun, 2018, 501(2):336-342.
[88] Tang Y, Wu H, Shao BZ, et al. Celosins inhibit atherosclerosis in ApoE-/- mice and promote autophagy flow[J]. J Ethnopharmacol, 2018, 215:74-82.
[89] Luo Y, Meng XB, Zhou P, et al. Elatoside C protects against ox-LDL-induced HUVECs injury by FoxO1-mediated autophagy induction[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(6):1654-1665.
[90] Badimon L, Padró T, Vilahur G. Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease[J]. Eur Heart J Acute Cardiovasc Care, 2012, 1(1):60-74.
[91] Iacono KT, Brown AL, Greene MI, et al. CD147 immuno-globulin superfamily receptor function and role in pathology[J]. Exp Mol Pathol, 2007, 83(3):283-295.
[92] Clarke MCH, Figg N, Maguire JJ, et al. Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis[J]. Nat Med, 2006, 12(9):1075.
[93] Zhao D, Tong LF, Zhang LX, et al. Tanshinone Ⅱ A stabilizes vulnerable plaques by suppressing RAGE signaling and NF-κB activation in apolipoprotein-E-deficient mice[J]. Mol Med Rep, 2016, 14(6):4983-4990.
[94] Tanaka K, Nagata D, Hirata Y, et al. Augmented angiogenesis in adventitia promotes growth of atherosclerotic plaque in apolipoprotein E-deficient mice[J]. Atherosclerosis, 2011, 215(2):366-373.
[95] Hutter R, Speidl WS, Valdiviezo C, et al. Macrophages transmit potent proangiogenic effects of oxLDL in vitro and in vivo involving HIF-1α activation:a novel aspect of angiogenesis in atherosclerosis[J]. J Cardiovasc Transl Res, 2013, 6(4):558-569.
[96] Cochain C, Zernecke A. Macrophages and immune cells in atherosclerosis:recent advances and novel concepts[J]. Basic Res Cardiol, 2015, 110(4):34.
[97] Liang WJ, Wang Q, Ma H, et al. Knockout of low molecular weight FGF2 attenuates atherosclerosis by reducing macrophage infiltration and oxidative stress in mice[J]. Cell Physiol Biochem, 2018, 45(4):1434-1443.
[98] Ma LY, Ni M, Hao PP, et al. Tongxinluo mitigates atherogenesis by regulating angiogenic factors and inhibiting vasa vasorum neovascularization in apolipoprotein E-deficient mice[J]. Oncotarget, 2016, 7(13):16194.
[99] Cai F, Xu W, Wei H, et al. Simultaneous determination of active xanthone glycosides, timosaponins and lkaloids in rat plasma after oral administration of Zi-Shen Pill extract for the pharmacokinetic study by liquid chromatography-tandem mass spectrometry[J]. J Chromatogr B, 2010, 878(21):1845-1854.
[100] Shan B, Cai YZ, Brooks JD, et al. Antibacterial properties of Polygonum cuspidatum roots and their major bioactive constituents[J]. Food Chem, 2008, 109(3):530-537.
[101] Hu WH, Wang HY, Kong XP, et al. Polydatin suppresses VEGF-induced angiogenesis through binding with VEGF and inhibiting its receptor signaling[J]. FASEB J, 2018, 33(1):fj. 201800750R.
[102] Kim SL, Lee ST, Trang KT, et al. Parthenolide exerts inhibitory effects on angiogenesis through the downregulation of VEGF/VEGFRs in colorectal cancer[J]. Int J Mol Med, 2014, 33(5):1261-1267.
[103] Pan YY, Zhou FH, Song ZH, et al. Oleanolic acid protects against pathogenesis of atherosclerosis, possibly via FXR-mediated angiotensin (Ang)-(1-7) upregulation[J]. Biomed Pharmacother, 2018, 97:1694-1700.
[104] Berbée JF, Wong MC, Wang YN, et al. Resveratrol protects against atherosclerosis, but does not add to the antiatherogenic effect of atorvastatin, in APOE*3 Leiden.CETP mice[J]. J Nutr Biochem, 2013, 24(8):1423-1430.
[105] Chen XS, Pang SN, Lin JF, et al. Allicin prevents oxidized low-density lipoprotein-induced endothelial cell injury by inhibiting apoptosis and oxidative stress pathway[J]. BMC Complement Altern Med, 2016, 16(1):1-6.
[106] Wang Y, Che JB, Zhao HT, et al. Osthole alleviates oxidized low-density lipoprotein-induced vascular endothelial injury through suppression of transforming growth factor-β1/Smad pathway[J]. Int Immunopharmacol, 2018, 65:373-381.
[107] Dong PZ, Pan LL, Zhang XT, et al. Hawthorn (Crataeguspinnatifida Bunge) leave flavonoids attenuate atherosclerosis development in apoE knock-out mice[J]. J Ethnopharmacol, 2017, 198:479-488.
[108] Hu G, Liu J, Zhen YZ, et al. Rhein inhibits the expression of vascular cell adhesion molecule 1 in human umbilical vein endothelial cells with or without lipopolysaccharide stimulation[J]. Am J Chin Med, 2013, 41(03):473-485.
[109] Heo SK, Yun HJ, Noh EK, et al. Emodin and rhein inhibit LIGHT-induced monocytes migration by blocking of ROS production[J]. Vascul Pharmacol, 2010, 53(1):28-37.
[110] Duan J, Xiang D, Luo H, et al. Tetramethylpyrazine suppresses lipid accumulation in macrophages via upregulation of the ATP-binding cassette transporters and downregulation of scavenger receptors[J]. Oncol Rep, 2017, 38(4):2267-2276.
[111] You Y, Duan Y, Liu SW, et al. Anti-atherosclerotic function of Astragali Radix extract:downregulation of adhesion molecules in vitro and in vivo[J]. BMC Complement Altern Med, 2012, 12(1):54.
[112] Wu YL, Wang F, Fan LH, et al. Baicalin alleviates atherosclerosis by relieving oxidative stress and inflammatory responses via inactivating the NF-κB and p38 MAPK signaling pathways[J]. Biomed Pharmacother, 2018, 97:1673-1679.
[113] Lu XL, Zhao CH, Yao XL, et al. Quercetin attenuates high fructose feeding-induced atherosclerosis by suppressing inflammation and apoptosis via ROS-regulated PI3K/AKT signaling pathway[J]. Biomed Pharmacother, 2017, 85:658-671.
[114] Liu LH, Liao PP, Wang B, et al. Oral administration of baicalin and geniposide induces regression of atherosclerosis via inhibiting dendritic cells in ApoE-knockout mice[J]. Int Immunopharmacol, 2014, 20(1):197-204.
[115] Wu T, Peng Y, Yan SS, et al. Andrographolide ameliorates atherosclerosis by suppressing pro-inflammation and ROS generation-mediated foam cell formation[J]. Inflammation, 2018, 41(5):1681-1689.
[116] Lin HC, Lii CK, Chen HC, et al. Andrographolide inhibits oxidized LDL-induced cholesterol accumulation and foam cell formation in macrophages[J]. Am J Chin Med, 2018, 46(1):87-106.
[117] Wan Q, Liu ZY, Yang YP. Puerarin inhibits vascular smooth muscle cells proliferation induced by fine particulate matter via suppressing of the p38 MAPK signaling pathway[J]. BMC Complement Altern Med, 2018, 18(1):146.