CN: 32-1845/R
ISSN: 2095-6975
Cite this paper:
ZHOU Zhen-Zhen, ZHU Hong-Jie, YANG Cheng-Long, LIU Yan-Jun, JIANG Nan, XIAO Yong-Sheng, SHI Li-Yun, JIAO Rui-Hua, GE Hui-Ming, TAN Ren-Xiang. Dalestones A and B, two anti-inflammatory cyclopentenones from Daldinia eschscholzii with an edited strong promoter for the global regulator LaeA-like gene[J]. Chinese Journal of Natural Medicines, 2019, 17(5): 387-393

Dalestones A and B, two anti-inflammatory cyclopentenones from Daldinia eschscholzii with an edited strong promoter for the global regulator LaeA-like gene

ZHOU Zhen-Zhen1, ZHU Hong-Jie1, YANG Cheng-Long1, LIU Yan-Jun2, JIANG Nan3, XIAO Yong-Sheng1, SHI Li-Yun2, JIAO Rui-Hua1, GE Hui-Ming1, TAN Ren-Xiang1,2
1 State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing 210023, China;
2 State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China;
3 School of Pharmacy, Nanjing Medical University, Nanjing, 210029, China
Replacement of the native promoter of the global regulator LaeA-like gene of Daldinia eschscholzii by a strong gpdA promoter led to the generation of two novel cyclopentenone metabolites, named dalestones A and B, whose structures were assigned by a combination of spectroscopic analysis, modified Mosher's reaction, and electronic circular dichroism (ECD). Dalestones A and B inhibit the gene expression of TNF-α and IL-6 in LPS-induced RAW264.7 macrophages.
Key words:    Daldinia eschscholzii    Global regulator    Cyclopentenone   
Received: 2019-03-27   Revised:
PDF (1626 KB) Free
Print this page
Email this article to others
Articles by ZHOU Zhen-Zhen
Articles by ZHU Hong-Jie
Articles by YANG Cheng-Long
Articles by LIU Yan-Jun
Articles by JIANG Nan
Articles by XIAO Yong-Sheng
Articles by SHI Li-Yun
Articles by JIAO Rui-Hua
Articles by GE Hui-Ming
Articles by TAN Ren-Xiang
[1] Bills G, Li Y, Chen L, et al. New insights into the echi-nocandins and other fungal non-ribosomal peptides and peptaibiotics[J]. Nat Prod Rep, 2014, 31(10):1348-1375.
[2] Rutledge PJ, Challis GL. Discovery of microbial natural products by activation of silent biosynthetic gene clusters[J]. Nat Rev Microbiol, 2015, 13(8):509-523.
[3] Brakhage AA. Regulation of fungal secondary metabolism[J]. Nat Rev Microbiol, 2013, 11(1):21-32.
[4] Nielsen JC, Grijseels S, Prigent S, et al. Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species[J]. Nat Microbiol, 2017, 2(6):17044.
[5] Chiang YM, Lee KH, Sanchez JF, et al. Unlocking fungal cryptic natural products[J]. Nat Prod Commun, 2009, 4(11):1505-1510.
[6] Wiemann P, Keller NP. Strategies for mining fungal natural products[J]. J Ind Microbiol Biot, 2014, 41(2):301-313.
[7] Hautbergue T, Jamin EL, Debrauwer L, et al. From genomics to metabolomics, moving toward an integrated strategy for the discovery of fungal secondary metabolites[J]. Nat Prod Rep, 2018, 35(2):147-173.
[8] Cole PA. Chemical probes for histone-modifying enzymes[J]. Nat Chem Biol, 2008, 4(10):590-597.
[9] Chen JW, Wu QH, Hawas UW, et al. Genetic regulation and manipulation for natural product discovery[J]. Appl Microbiol Biotechnol, 2016, 100(7):2953-2965.
[10] Bok JW, Keller NP. LaeA, a regulator of secondary me-tabolism in Aspergillus spp.[J]. Eukaryot Cell, 2004, 3(2):527-535.
[11] Liu QP, Cai L, Shao YC, et al. Inactivation of the global regulator LaeA in Monascus ruber results in a species-dependent response in sporulation and secondary metabolism[J]. Fungal Biol, 2016, 120(3):297-305.
[12] Butchko RAE, Brown DW, Busman M, et al. Lae1 regulates expression of multiple secondary metabolite gene clusters in Fusarium verticillioides[J]. Fungal Genet Biol, 2012, 49(8):602-612.
[13] Martin JF. Key role of LaeA and velvet complex proteins on expression of β-lactam and PR-toxin genes in Penicillium chrysogenum:cross-talk regulation of secondary metabolite pathways[J]. J Ind Microbiol Biotechnol, 2017, 44(4-5):525-535.
[14] Zhang YL, Zhang J, Jiang N, et al. Immunosuppressive polyketides from mantis-associated Daldinia eschscholzii[J]. J Am Chem Soc, 2011, 133(15):5931-5940.
[15] Fang W, Ji S, Jiang N, et al. Naphthol radical couplings determine structural features and enantiomeric excess of dalesconols in Daldinia eschscholzii[J]. Nat Commun, 2012, 3:1039.
[16] Rossi A, Kapahi P, Natoli G, et al. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IκB kinase[J]. Nature, 2000, 403(6765):103-108.
[17] Conti M. Cyclopentenone:a special moiety for anticancer drug design[J]. Anti-cancer Drug, 2006, 17(9):1017-1022.
[18] Stintzi A, Weber H, Reymond P, et al. Plant defense in the absence of jasmonic acid:the role of cyclopentenones[J]. Proc Natl Acad Sci, 2001, 98(22):12837-12842.
[19] Zaehle C, Gressler M, Shelest E, et al. Terrein biosynthesis in Aspergillus terreus and its impact on phytotoxicity[J]. Chem Biol, 2014, 21(6):719-731.
[20] Schumacher J, Simon A, Cohrs KC, et al. The VELVET complex in the gray mold fungus Botrytis cinerea:impact of BcLAE1 on differentiation, secondary metabolism, and virulence[J]. Mol Plant Microbe Interact, 2015, 28(6):659-674.
[21] Punt PJ, Dingemanse MA, Kuyvenhoven A, et al. Functional elements in the promoter region of the Aspergillus nidulans gpdA gene encoding glyceraldehyde-3-phosphate dehydrogenase[J]. Gene 1990, 93(1):101-109.
[22] Teles HL, Silva GH, Castro-Gamboa I, et al. Benzopyrans from Curvularia sp., an endophytic fungus associated with Ocotea corymbosa (Lauraceae)[J]. Phytochemistry, 2005, 66(19):2363-2367.
[23] Zhou ZZ, Zhu HJ, Lin LP, et al. Dalmanol biosyntheses require coupling of two separate polyketide gene clusters[J]. Chem Sci, 2019, 10, 73-82.
[24] Freire F, Seco JM, Quinoa E, et al. Determining the absolute stereochemistry of secondary/secondary diols by 1H NMR:Basis and applications[J]. J Org Chem, 2005, 70(10):3778-3790.
[25] Yang CL, Wang YS, Liu CL, et al. Strepchazolins A and B:two new alkaloids from a marine Streptomyces chartreusis NA02069[J]. Mar Drugs, 2017, 15(8):244.
[26] Costa JF, Barbosa-Filho JM, Maia GL, et al. Potent anti-inflammatory activity of betulinic acid treatment in a model of lethal endotoxemia[J]. Int Immunopharmacol, 2014, 23(2):469-474.
[27] Szewczyk E, Nayak T, Oakley CE, et al. Fusion PCR and gene targeting in Aspergillus nidulans[J]. Nat protoc, 2006, 1:3111-3120.
[28] Bruhn T, Hemberger Y, Schaumlöffel A, et al. SpecDis version 1.50[M]. University of Wuerzburg, Germany, 2010.
[29] Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, Revision A.1[M]. Gaussian Inc., Wallingford CT, USA, 2009.