CN: 32-1845/R
ISSN: 2095-6975
Cite this paper:
SONG Xiu-Qing, ZHANG Jun-Sheng, YU Shu-Juan, YU Jin-Hai, ZHANG Hua. New octadecanoid derivatives from the seeds of Ipomoea nil[J]. Chinese Journal of Natural Medicines, 2019, 17(4): 303-307

New octadecanoid derivatives from the seeds of Ipomoea nil

SONG Xiu-Qing1,2, ZHANG Jun-Sheng2, YU Shu-Juan1,2, YU Jin-Hai2, ZHANG Hua2
1 School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China;
2 School of Biological Science and Technology, University of Jinan, Jinan 250022, China
Four new octadecanoid derivatives (1-4) including a pair of enantiomers (1/2), along with 12 known analogues (5-16), were isolated from the seeds of Ipomoea nil. Their structures were determined by detailed spectroscopic analyses and comparison with reported data of structurally related compounds, with the absolute configurations of 1 and 2 being assigned by an in situ dimolybdenum ECD method. Our bioassays revealed that these isolates did not show ABTS radical scavenging activity while 10 and 13 displayed better α-glucosidase inhibitory activity than the positive control acarbose (IC50 167.7 ±1.55 μmol·L-1), with IC50 of 92.73 ±3.12 and 11.39 ±2.18 μmol·L-1, respectively.
Key words:    Ipomoea nil    Octadecanoid    Fatty acid    Natural enantiomer    α-Glucosidase inhibition   
Received: 2018-11-12   Revised:
PDF (386 KB) Free
Print this page
Email this article to others
Articles by SONG Xiu-Qing
Articles by ZHANG Jun-Sheng
Articles by YU Shu-Juan
Articles by YU Jin-Hai
Articles by ZHANG Hua
[1] Flora of China Editorial Committee of Chinese Academy of Sciences. Flora of China[M]. Beijing:Science Press, 2002:103.
[2] National Pharmacopoeia Committee. Pharmacopoeia of The People's Republic of China[M]. Beijing:Press of Traditional Chinese Medicine, 2015:253.
[3] Lee SR, Moon E, Kim KH. Neolignan and monoterpene glycoside from the seeds of Pharbitis nil[J]. Phytochem Lett, 2017, 20:98-101.
[4] Kim KH, Woo KW, Moon E, et al. Identification of antitu-mor lignans from the seeds of Morning glory (Pharbitis nil)[J]. J Agr Food Chem, 2014, 62(31):7746-52.
[5] Kim KH, Ha SK, Choi SU, et al. Bioactive phenolic constituents from the seeds of Pharbitis nil[J]. Chem Pharm Bull, 2011, 59(11):1425-1429.
[6] Woo KW, Park KJ, Sang ZC, et al. A new ent-kaurane diterpene glycoside from seeds of Pharbitis nil[J]. Chem Nat Compd, 2017, 53(3):468-471.
[7] Kim KH, Choi SU, Lee KR. Diterpene glycosides from the seeds of Pharbitis nil[J]. J Nat Prod, 2009, 72(6):1121-1127.
[8] Kim KH, Mi RJ, Sang ZC, et al. Three new ent-kaurane diterpenoids from the seeds of Pharbitis nil[J]. Heterocycles, 2008, 75(6):1447-1455.
[9] Bai LJ, Luo JG, Chen C, et al. Pharesinosides A-G, acylated glycosidic acid methyl esters derivatized by NH2 silica gel on-column catalyzation from the crude resin glycosides of Pharbitis Semen[J]. Tetrahedron, 2017, 73(20):2863-2871.
[10] Ono M, Takigawa A, Mineno T, et al. Acylated glycosides of hydroxy fatty acid methyl esters generated from the crude resin glycoside (Pharbitin) of seeds of Pharbitis nil by treatment with indium(Ⅲ) chloride in methanol[J]. J Nat Prod, 2010, 73(11):1846-1852.
[11] Kim KH, Sang UC, Mi WS, et al. Two new phenolic am-ides from the seeds of Pharbitis nil[J]. Chem Pharm Bull, 2010, 58(11):1532-1535.
[12] Kim KH, Sang UC, Mi WS, et al. Pharbinilic acid, an allogibberic acid from Morning glory (Pharbitis nil)[J]. J Nat Prod, 2013, 76(7):1376-1379.
[13] Da YJ, Ha H, Lee HY, et al. Triterpenoid saponins from the seeds of Pharbitis nil[J]. Chem Pharm Bull, 2008, 56(2):203-206.
[14] Schimming T, Jenett-Siems K, Siems K, et al. N1, N10-ditigloylspermidine, a novel alkaloid from the seeds of Ipomoea nil[J]. Pharmazie, 2005, 60(12):958-959.
[15] Das S, Ganguly SN, Mukherjee KK. Fatty acids and phytochemical components of Ipomoea spp. seeds[J]. Nat Prod Sci, 19995(3):121-123.
[16] Kim KH, Moon E, Sun YK, et al. Anti-melanogenic fatty acid derivatives from the Tuber-barks of Colocasia antiquorum var. esculenta[J]. Bull Korean Chem Soc, 2010, 31(7):2051-2053.
[17] Gorecki M, Jablonska E, Kruszewska A, et al. Practical method for the absolute configuration assignment of tert/tert 1, 2-diols using their complexes with Mo2(OAc)4[J]. J Org Chem, 2007, 72(8):2906-2916.
[18] Bari LD, Pescitelli G, Pratelli C, et al. Determination of absolute configuration of acyclic 1, 2-diols with Mo2(OAc)4. 1. Snatzke's method revisited[J]. J Org Chem, 2001, 66(14):4819-4825.
[19] Dong M, Oda Y, Hirota M. (10E, 12Z, 15Z)-9-Hydroxy-10, 12, 15-octadecatrienoic acid methyl ester as an anti-inflammatory compound from Ehretia dicksonii[J]. Biosci Biotech Bioch, 2000, 64(4):882-886.
[20] Li Z, Tran VH, Duke RK, et al. Synthesis and biological activity of hydroxylated derivatives of linoleic acid and conjugated linoleic acids[J]. Chem Phys Lipids, 2009, 158(1):39-45.
[21] Rahman AU, Sultana N, Shahwar D, et al. Two new fatty esters from Rhazya stricta roots (Apocynanaceae)[J]. Nat Prod Res, 2008, 22(15):1350-1354.
[22] Zhang K, Chen CX, Wang DZ, et al. A new dimer of amide from Piper longum[J]. Plant Diver Resour, 1996, 18(3):353-355.
[23] Harrison LJ, Sia GL, Sim KY, et al. A ferulic acid ester of sucrose and other constituents of Bhesa paniculata[J]. Phytochemistry, 1995, 38(6):1497-1500.
[24] Chang HW, Jang KH, Lee D, et al. Monoglycerides from the brown alga Sargassum sagamianum:Isolation, synthesis, and biological activity[J]. Bioorg Med Chem Lett, 2008, 18(12):3589-3592.
[25] Kim DG, Kang MJ, Hong SS, et al. Antiinflammatory effects of functionally active compounds isolated from aged black garlic[J]. Phytother Res, 2017, 31(1):53-61.
[26] Jamal S, Ahmad I, Agarwal R, et al. A novel oxo fatty acid in Plantago ovata seed oil[J]. Phytochemistry, 1987, 26(11):3067-3069.
[27] Christie WW, Holman RT. Synthesis and characterization of the complete series of methylene-interrupted cis, cis-octadecadienoic acids[J]. Chem Phys Lipids, 1967, 1(5):407-423.
[28] Zhao C, Xing GS, Xu R, et al. Rabdosia acids A and B:Two new lipids from Rabdosia lophanthoides[J]. Chem Nat Compd, 2016, 52(2):205-207.
[29] Simona DM, Nicola B, Fulvio G, et al. New constituents of sweet Capsicum annuum L. fruits and evaluation of their biological activity[J]. J Agric Food Chem, 2006, 54(20):7508-7516.
[30] Xu QM, Liu YL, Li XR, et al. Three new fatty acids from the roots of Boehmeria nivea (L.) Gaudich and their antifungal activities[J]. Nat Prod Res, 2011, 25(6):640-647.
[31] Benavides A, Napolitano A, Bassarello C, et al. Oxylipins from Dracontium loretense[J]. J Nat Prod, 2009, 72(5):813-817.
[32] Bao J, He F, Yu JH, et al. New Chromones from a ma-rine-derived fungus, Arthrinium sp.[J]. Molecules, 2018, 23(8):1982.