CN: 32-1845/R
ISSN: 2095-6975
Cite this paper:
LI Zhao-He, ZHOU You, DING You-Xiang, GUO Qing-Long, ZHAO Li. Roles of integrin in tumor development and the target inhibitors[J]. Chinese Journal of Natural Medicines, 2019, 17(4): 241-251

Roles of integrin in tumor development and the target inhibitors

LI Zhao-He, ZHOU You, DING You-Xiang, GUO Qing-Long, ZHAO Li
State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, China
Integrin is a large family of cell adhesion molecules (CAMs) which involves in the interaction of cells/cells and cells/extracellular matrix (ECM) to mediate cell proliferation, differentiation, adhesion, migration, etc. In recent years, aberrant expression of integrin has been clearly found in many tumor studies, indicating that integrin is closely related to tumor formation and development. Meanwhile, it has effects on tumor cell differentiation, cell migration, proliferation and tumor neovascularization. The study of drugs targeting integrins is of great significance for the clinical treatment of tumors. Because of its important role in tumorigenesis and development, integrin has become a promising target for the treatment of cancer. This review summarizes the role of integrin in tumor development and the current state of integrin inhibitors to provide a valuable reference for subsequent research.
Key words:    Integrin    Tumor development    Target therapy    Natural medicines   
Received: 2018-12-22   Revised:
PDF (1314 KB) Free
Print this page
Email this article to others
Articles by LI Zhao-He
Articles by ZHOU You
Articles by DING You-Xiang
Articles by GUO Qing-Long
Articles by ZHAO Li
[1] Berrier AL, Yamada KM, et al. Cell-matrix adhesion[J]. J Cell Physiol, 2007, 213(3):565-573.
[2] Pan L, Zhao Y, Yuan Z, et al. Research advances on struc-ture and biological functions of integrins[J]. Springerplus, 2016, 5(1):1094.
[3] Bianconi D, Unseld M, Prager GW, et al. Integrins in the spotlight of cancer[J]. Int J Mol Sci, 2016, 17(12).
[4] Schnittert J, Bansal R, Storm G, et al. Integrins in wound healing, fibrosis and tumor stroma:High potential targets for therapeutics and drug delivery[J]. Adv Drug Deliv Rev, 2018, 129:37-53.
[5] Desgrosellier JS, Cheresh DA. Integrins in cancer:bio-logical implications and therapeutic opportunities[J]. Nat Rev Cancer, 2010, 10(1):9-22.
[6] Hamidi H, Pietila M, Ivaska J, et al. The complexity of integrins in cancer and new scopes for therapeutic targeting[J]. Br J Cancer, 2016, 115(9):1017-1023.
[7] Xia H, Nho RS, Kahm J, et al. Focal adhesion kinase is upstream of phosphatidylinositol 3-kinase/Akt in regulating fibroblast survival in response to contraction of type I collagen matrices via a beta 1 integrin viability signaling pathway[J]. J Biol Chem, 2004, 279(31):33024-33034.
[8] Ahmed N, Riley C, Rice GE, et al. Alpha(v)beta(6) in-tegrin-A marker for the malignant potential of epithelial ovarian cancer[J]. J Histochem Cytochem, 2002, 50(10):1371-1380.
[9] Kim EJ, Kwon KA, Lee YE, et al. Korean Red Ginseng extract reduces hypoxia-induced epithelial-mesenchymal transition by repressing NF-kappaB and ERK1/2 pathways in colon cancer[J]. J Ginseng Res, 2018, 42(3):288-297.
[10] Hamidi H, Ivaska J. Every step of the way:integrins in cancer progression and metastasis[J]. Nat Rev Cancer, 2018, 18(9):533-548.
[11] Del Rosso M, Fibbi G, Pucci M, et al. Multiple pathways of cell invasion are regulated by multiple families of serine proteases[J]. Clin Exp Metastasis, 2002, 19(3):193-207.
[12] Chen JC, Yang ST, Lin CY, et al. BMP-7 enhances cell migration and alphavbeta3 integrin expression via a c-Src-dependent pathway in human chondrosarcoma cells[J]. PLoS One, 2014, 9(11):e112636.
[13] Ahmed N, Pansino F, Clyde R, et al. Overexpression of alpha(v)beta6 integrin in serous epithelial ovarian cancer regulates extracellular matrix degradation via the plasminogen activation cascade[J]. Carcinogenesis, 2002, 23(2):237-244.
[14] Guo X, Zhao B. Integration of mechanical and chemical signals by YAP and TAZ transcription coactivators[J]. Cell Biosci, 2013, 3(1):33.
[15] Stupack DG, Puente XS, Boutsaboualoy S, et al. Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins[J]. J Cell Biol, 2001, 155(3):459-470.
[16] Lotti R, Marconi A, Truzzi F, et al. A previously unre-ported function of beta(1)B integrin isoform in caspase-8-dependent integrin-mediated keratinocyte death[J]. J Invest Dermatol, 2010, 130(11):2569-2577.
[17] Ata R, Antonescu CN. Integrins and cell metabolism:an intimate relationship impacting cancer[J]. Int J Mol Sci, 2017, 18(1).
[18] Longmate W, DiPersio CM. Beyond adhesion:emerging roles for integrins in control of the tumor microenvironment[J]. F1000Res, 2017, 6:1612.
[19] Silva R, D'Amico G, Hodivala-Dilke KM, et al. Integrins:the keys to unlocking angiogenesis[J]. Arterioscler Thromb Vasc Biol, 2008, 28(10):1703-1713.
[20] Shattil SJ, Ginsberg MH. Integrin signaling in vascular biology[J]. J Clin Invest, 1997, 100(11 Suppl):S91-95.
[21] Mahabeleshwar GH, Chen J, Feng W, et al. Integrin affin-ity modulation in angiogenesis[J]. Cell Cycle, 2008, 7(3):335-347.
[22] Larsen AB, Stockhausen MT, Poulsen HS, et al. Cell adhe-sion and EGFR activation regulate EphA2 expression in cancer[J]. Cell Signal, 2010, 22(4):636-644.
[23] Juan-Rivera MC, Martinez-Ferrer M. Integrin inhibitors in prostate cancer[J]. Cancers (Basel), 2018, 10(2):44.
[24] Stupp R, Hegi ME, Neyns B, et al. Phase I/Ⅱa study of cilengitide and temozolomide with concomitant radiotherapy followed by cilengitide and temozolomide maintenance therapy in patients with newly diagnosed glioblastoma[J]. J Clin Oncol, 2010, 28(16):2712-2718.
[25] Manegold C, Vansteenkiste J, Cardenal F, et al. Random-ized phase Ⅱ study of three doses of the integrin inhibitor cilengitide versus docetaxel as second-line treatment for patients with advanced non-small-cell lung cancer[J]. Invest New Drugs, 2013, 31(1):175-182.
[26] Scaringi C, Minniti G, Caporello P, et al. Integrin inhibitor cilengitide for the treatment of glioblastoma:a brief overview of current clinical results[J]. Anticancer Res, 2012, 32(10):4213-4223.
[27] Friess H, Langrehr JM, Oettle H, et al. A randomized multi-center phase Ⅱ trial of the angiogenesis inhibitor Cilengitide (EMD 121974) and gemcitabine compared with gemcitabine alone in advanced unresectable pancreatic cancer[J]. BMC Cancer, 2006, 6:285.
[28] Nabors LB, Mikkelsen T, Hegi ME, et al. A safety run-in and randomized phase 2 study of cilengitide combined with chemoradiation for newly diagnosed glioblastoma (NABTT 0306)[J]. Cancer, 2012, 118(22):5601-5607.
[29] Mason WP. End of the road:confounding results of the CORE trial terminate the arduous journey of cilengitide for glioblastoma[J]. Neurol Oncol, 2015, 17(5):634-635.
[30] Avraamides CJ, Garmy-Susini B, Varner JA, et al. In-tegrins in angiogenesis and lymphangiogenesis[J]. Nat Rev Cancer, 2008, 8(8):604-617.
[31] van der Horst G, van den Hoogen C, Buijs JT, et al. Targeting of alpha(v)-integrins in stem/progenitor cells and supportive microenvironment impairs bone metastasis in human prostate cancer[J]. Neoplasia, 2011, 13(6):516-525.
[32] Zhao Y, Bachelier R, Treilleux I, et al. Tumor alphavbeta3 integrin is a therapeutic target for breast cancer bone metastases[J]. Cancer Res, 2007, 67(12):5821-5830.
[33] Cirkel GA, Kerklaan BM, Vanhoutte F, et al. A dose esca-lating phase I study of GLPG0187, a broad spectrum integrin receptor antagonist, in adult patients with progressive high-grade glioma and other advanced solid malignancies[J]. Invest New Drugs, 2016, 34(2):184-192.
[34] Rosenthal MA, Davidson P, Rolland F, et al. Evaluation of the safety, pharmacokinetics and treatment effects of an alpha (nu) beta (3) integrin inhibitor on bone turnover and disease activity in men with hormone-refractory prostate cancer and bone metastases[J]. Asia Pac J Clin Oncol, 2010, 6(1):42-48.
[35] Hutchinson JH, Halczenko W, Brashear KM, et al. Nonpeptide alphavbeta3 antagonists. 8. In vitro and in vivo evaluation of a potent alphavbeta3 antagonist for the prevention and treatment of osteoporosis[J]. J Med Chem, 2003, 46(22):4790-4798.
[36] Zhou X, Zhang J, Haimbach R, et al. An integrin antago-nist (MK-0429) decreases proteinuria and renal fibrosis in the ZSF1 rat diabetic nephropathy model[J]. Pharmacol Res Perspect, 2017, 5(5):e00354.
[37] Pickarski M, Gleason A, Bednar B, et al. Orally active alphavbeta3 integrin inhibitor MK-0429 reduces melanoma metastasis[J]. Oncol Rep, 2015, 33(6):2737-2745.
[38] Tucker GC. Integrins:molecular targets in cancer therapy[J]. Curr Oncol Rep, 2006, 8(2):96-103.
[39] Chen Q, Manning CD, Millar H, et al. CNTO 95, a fully human anti alphav integrin antibody, inhibits cell signaling, migration, invasion, and spontaneous metastasis of human breast cancer cells[J]. Clin Exp Metastasis, 2008, 25(2):139-148.
[40] Mullamitha SA, Ton NC, Parker GJ, et al. Phase I evalua-tion of a fully human anti-alphav integrin monoclonal antibody (CNTO 95) in patients with advanced solid tumors[J]. Clin Cancer Res, 2007, 13(7):2128-2135.
[41] Ramakrishnan V, Bhaskar V, Law DA, et al. Preclinical evaluation of an anti-alpha5beta1 integrin antibody as a novel anti-angiogenic agent[J]. J Exp Ther Oncol, 2006, 5(4):273-286.
[42] Ricart AD, Tolcher AW, Liu G, et al. Volociximab, a chi-meric monoclonal antibody that specifically binds alpha5beta1 integrin:a phase I, pharmacokinetic, and biological correlative study[J]. Clin Cancer Res, 2008, 14(23):7924-7929.
[43] Bell-McGuinn KM, Matthews CM, Ho SN, et al. A phase Ⅱ, single-arm study of the anti-alpha5beta1 integrin antibody volociximab as monotherapy in patients with platinum-resistant advanced epithelial ovarian or primary peritoneal cancer[J]. Gynecol Oncol, 2011, 121(2):273-279.
[44] Ng CM, Bai S, Takimoto CH, et al. Mechanism-based receptor-binding model to describe the pharmacokinetic and pharmacodynamic of an anti-alpha5beta1 integrin monoclonal antibody (volociximab) in cancer patients[J]. Cancer Chemother Pharmacol, 2010, 65(2):207-217.
[45] Wu H, Beuerlein G, Nie Y, et al. Stepwise in vitro affinity maturation of Vitaxin, an alphav beta3-specific humanized mAb[J]. Proc Natl Acad Sci USA, 1998, 95(11):6037-6042.
[46] McNeel DG, Eickhoff J, Lee FT, et al. Phase I trial of a monoclonal antibody specific for alphavbeta3 integrin (MEDI-522) in patients with advanced malignancies, including an assessment of effect on tumor perfusion[J]. Clin Cancer Res, 2005, 11(21):7851-7860.
[47] Eliceiri BP, Cheresh DA. The role of alphav integrins during angiogenesis:insights into potential mechanisms of action and clinical development[J]. J Clin Invest, 1999, 103(9):1227-1230.
[48] Hersey P, Sosman J, O'Day S, et al. A randomized phase 2 study of etaracizumab, a monoclonal antibody against integrin alpha(v)beta(3), + or-dacarbazine in patients with stage IV metastatic melanoma[J]. Cancer, 2010, 116(6):1526-1534.
[49] Wang W, Wang F, Lu F, et al. The antiangiogenic effects of integrin alpha5beta1 inhibitor (ATN-161) in vitro and in vivo[J]. Invest Ophthalmol Vis Sci, 2011, 52(10):7213-7220.
[50] Khalili P, Arakelian A, Chen G, et al. A non-RGD-based integrin binding peptide (ATN-161) blocks breast cancer growth and metastasis in vivo[J]. Mol Cancer Ther, 2006, 5(9):2271-2280.
[51] Stoeltzing O, Liu W, Reinmuth N, et al. Inhibition of integrin alpha5beta1 function with a small peptide (ATN-161) plus continuous 5-FU infusion reduces colorectal liver metastases and improves survival in mice[J]. Int J Cancer, 2003, 104(4):496-503.
[52] Cianfrocca ME, Kimmel KA, Gallo J, et al. Phase 1 trial of the antiangiogenic peptide ATN-161(Ac-PHSCN-NH(2)), a beta integrin antagonist, in patients with solid tumours[J]. Br J Cancer, 2006, 94(11):1621-1626.
[53] Zhang JP, Tian XH, Yang YX, et al. Gleditsia species:An ethnomedical, phytochemical and pharmacological review[J]. J Ethnopharmacol, 2016, 178:155-171.
[54] Ryu S, Park KM, Lee SH, et al. Gleditsia sinensis thorn attenuates the collagen-based migration of PC3 prostate cancer cells through the suppression of alpha2beta1 integrin expression[J]. Int J Mol Sci, 2016, 17(3):328.
[55] Streeter JG. Carbohydrates in soybean nodules:Ⅱ. Dis-tribution of compounds in seedlings during the onset of nitrogen fixation[J]. Plant Physiol, 1980, 66(3):471-476.
[56] Lin TH, Tan TW, Tsai TH, et al. D-pinitol inhibits prostate cancer metastasis through inhibition of alphaVbeta3 integrin by modulating FAK, c-Src and NF-kappaB pathways[J]. Int J Mol Sci, 2013, 14(5):9790-9802.
[57] Sethi G, Ahn KS, Sung B, et al. Pinitol targets nuclear factor-kappaB activation pathway leading to inhibition of gene products associated with proliferation, apoptosis, invasion, and angiogenesis[J]. Mol Cancer Ther, 2008, 7(6):1604-1614.
[58] Wang X, Wei Y, Yuan S, et al. Potential anticancer activity of tanshinone ⅡA against human breast cancer[J]. Int J Cancer, 2005, 116(5):799-807.
[59] Su CC, Chen GW, Kang JC, et al. Growth inhibition and apoptosis induction by tanshinone ⅡA in human colon adenocarcinoma cells[J]. Planta Med, 2008, 74(11):1357-1362.
[60] Lin LL, Hsia CR, Hsu CL, et al. Integrating transcriptom-ics and proteomics to show that tanshinone ⅡA suppresses cell growth by blocking glucose metabolism in gastric cancer cells[J]. BMC Genomics, 2015, 16:41.
[61] Bolarinwa IF, Orfila C, Morgan MR, et al. Amygdalin content of seeds, kernels and food products commer-cially-available in the UK[J]. Food Chem, 2014, 152:133-139.
[62] Makarevic J, Rutz J, Juengel E, et al. Amygdalin blocks bladder cancer cell growth in vitro by diminishing cyclin A and cdk2[J]. PLoS One, 2014, 9(8):e105590.
[63] Qian L, Xie B, Wang Y, et al. Amygdalin-mediated inhibi-tion of non-small cell lung cancer cell invasion in vitro[J]. Int J Clin Exp Pathol, 2015, 8(5):5363-5370.
[64] Moertel CG, Ames MM, Kovach JS, et al. A pharmacologic and toxicological study of amygdalin[J]. JAMA, 1981, 245(6):591-594.
[65] Kannaiyan R, Shanmugam MK, Sethi G, et al. Molecular targets of celastrol derived from Thunder of God Vine:potential role in the treatment of inflammatory disorders and cancer[J]. Cancer Lett, 2011, 303(1):9-20.
[66] Boridy S, Le PU, Petrecca K, et al. Celastrol targets proteostasis and acts synergistically with a heat-shock protein 90 inhibitor to kill human glioblastoma cells[J]. Cell Death Dis, 2014, 5:e1216.
[67] Zhao X, Gao S, Ren H, et al. Inhibition of autophagy strengthens celastrol-induced apoptosis in human pancreatic cancer in vitro and in vivo models[J]. Curr Mol Med, 2014, 14(4):555-563.
[68] Ke C, Jin H, Cai J, et al. AFM studied the effect of celas-trol on beta1 integrin-mediated HUVEC adhesion and migration[J]. Scanning, 2013, 35(5):316-326.
[69] Kang SW, Kim MS, Kim HS, et al. Celastrol attenuates adipokine resistin-associated matrix interaction and migration of vascular smooth muscle cells[J]. J Cell Biochem, 2013, 114(2):398-408.
[70] Xu J, Wu CL, Huang J, et al. Effect of celastrol in inhib-iting metastasis of lung cancer cells by influencing Akt signaling pathway and expressing integrins[J]. China J Chin Mater Med, 2015, 40(6):1129-1133.
[71] Gupta SC, Patchva S, Aggarwal BB, et al. Therapeutic roles of curcumin:lessons learned from clinical trials[J]. AAPS J, 2013, 15(1):195-218.
[72] Zhou H, Beevers CS, Huang S, et al. The targets of curcu-min[J]. Curr Drug Targets, 2011, 12(3):332-347.
[73] Manikandan R, Beulaja M, Arulvasu C, et al. Synergistic anticancer activity of curcumin and catechin:an in vitro study using human cancer cell lines[J]. Microsc Res Tech, 2012, 75(2):112-116.
[74] Shakibaei M, Schulze-Tanzil G, John T, et al. Curcumin protects human chondrocytes from IL-l1beta-induced inhibition of collagen type Ⅱ and beta1-integrin expression and activation of caspase-3:an immunomorphological study[J]. Ann Anat, 2005, 187(5-6):487-497.
[75] Li Y, Domina A, Lim G, et al. Evaluation of curcumin, a natural product in turmeric, on Burkitt lymphoma and acute myeloid leukemia cancer stem cell markers[J]. Future Oncol, 2018, 14(23):2353-2360.
[76] Matsuda H, Tong CN, Kubo M, et al. Pharmacological study on Panax ginseng C. A. Meyer. XIV. Effect of 70% methanolic extract from red ginseng on the cytocidal effect of mitomycin c against rat ascites hepatoma AH 130[J]. Yakugaku Zasshi, 1992, 112(11):846-855.
[77] Shinkai K, Akedo H, Mukai M, et al. Inhibition of in vitro tumor cell invasion by ginsenoside Rg3[J]. Jpn J Cancer Res, 1996, 87(4):357-362.
[78] Bai L, Gao J, Wei F, et al. Therapeutic potential of ginse-nosides as an adjuvant treatment for diabetes[J]. Front Pharmacol, 2018, 9:423.
[79] Xu FY, Shang WQ, Yu JJ, et al. The antitumor activity study of ginsenosides and metabolites in lung cancer cell[J]. Am J Transl Res, 2016, 8(4):1708-1718.
[80] Petpiroon N, Sritularak B, Chanvorachote P, et al. Phoyunnanin E inhibits migration of non-small cell lung cancer cells via suppression of epithelial-to-mesenchymal transition and integrin alphav and integrin beta3[J]. BMC Complement Altern Med, 2017, 17(1):553.
[81] Romano B, Pagano E, Montanaro V, et al. Novel insights into the pharmacology of flavonoids[J]. Phytother Res, 2013, 27(11):1588-1596.
[82] Lu L, Guo Q, Zhao L, et al. Overview of oroxylin A:A promising flavonoid compound[J]. Phytother Res, 2016, 30(11):1765-1774.
[83] Sun Y, Lu N, Ling Y, et al. Oroxylin A suppresses invasion through down-regulating the expression of matrix metalloproteinase-2/9 in MDA-MB-435 human breast cancer cells[J]. Eur J Pharmacol, 2009, 603(1-3):22-28.
[84] Yang HY, Zhao L, Yang Z, et al. Oroxylin A reverses multi-drug resistance of human hepatoma BEL7402/5-FU cells via downregulation of P-glycoprotein expression by inhibiting NF-kappaB signaling pathway[J]. Mol Carcinog, 2012, 51(2):185-195.
[85] Zhu B, Zhao L, Zhu L, et al. Oroxylin A reverses CAM-DR of HepG2 cells by suppressing Integrinbeta1 and its related pathway[J]. Toxicol Appl Pharmacol, 2012, 259(3):387-394.