CN: 32-1845/R
ISSN: 2095-6975
Cite this paper:
0
SUN Shan-Shan, WANG Kai, MA Ke, BAO Li, LIU Hong-Wei. An insoluble polysaccharide from the sclerotium of Poria cocos improves hyperglycemia, hyperlipidemia and hepatic steatosis in ob/ob mice via modulation of gut microbiota[J]. Chinese Journal of Natural Medicines, 2019, 17(1): 3-14

An insoluble polysaccharide from the sclerotium of Poria cocos improves hyperglycemia, hyperlipidemia and hepatic steatosis in ob/ob mice via modulation of gut microbiota

SUN Shan-Shan1,2, WANG Kai2,3, MA Ke2,3, BAO Li2,3, LIU Hong-Wei2,3
1 School of Life Sciences, University of Science and Technology of China, Hefei 230026, China;
2 State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
3 University of Chinese Academy of Sciences, Beijing, 100049, China
Abstract:
Metabolic syndrome characterized by obesity, hyperglycemia and liver steatosis is becoming prevalent all over the world. Herein, a water insoluble polysaccharide (WIP) was isolated and identified from the sclerotium of Poria cocos, a widely used Traditional Chinese Medicine. WIP was confirmed to be a (1-3)-β-D-glucan with an average Mw of 4.486×106 Da by NMR and SEC-RI-MALLS analyses. Furthermore, oral treatment with WIP from P. cocos significantly improved glucose and lipid metabolism and alleviated hepatic steatosis in ob/ob mice. 16S DNA sequencing analysis of cecum content from WIP-treated mice indicated the increase of butyrate-producing bacteria Lachnospiracea, Clostridium. It was also observed that WIP treatment elevated the level of butyrate in gut, improved the gut mucosal integrity and activated the intestinal PPAR-γ pathway. Fecal transplantation experiments definitely confirmed the causative role of gut microbiota in mediating the benefits of WIP. It is the first report that the water insoluble polysaccharide from the sclerotium of P. cocos modulates gut microbiota to improve hyperglycemia and hyperlipidemia. Thereby, WIP from P. cocos, as a prebiotic, has the potential for the prevention or cure of metabolic diseases and may elucidate new mechanism for the efficacies of this traditional herbal medicine on the regulation of lipid and glucose metabolism.
Key words:    Poria cocos    Water insoluble polysaccharide    Metabolic syndrome    Prebiotics    Gut microbiota   
Received: 2018-10-01   Revised:
Tools
PDF (6482 KB) Free
Print this page
Email this article to others
Authors
Articles by SUN Shan-Shan
Articles by WANG Kai
Articles by MA Ke
Articles by BAO Li
Articles by LIU Hong-Wei
References:
[1] Blandino G, Inturri R, Lazzara F, et al. Impact of gut microbiota on diabetes mellitus[J]. Diabetes Metab, 2016, 42(5):303-315.
[2] Kootte RS, Vrieze A, Holleman F, et al. The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus[J]. Diabetes Obes Metab, 2012, 14(2):112-120.
[3] Li X, Watanabe K, Kimura I. Gut microbiota dysbiosis drives and implies novel therapeutic strategies for diabetes mellitus and related metabolic diseases[J]. Front Immunol, 2017, 8(1882):1-7.
[4] Mulders RJ, de Git KCG, Schele E, et al. Microbiota in obesity:interactions with enteroendocrine, immune and central nervous systems[J]. Obes Rev, 2018, 19(4):435-451
[5] Chang CJ, Lin CS, Lu CC, et al. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat Commun, 2015, 6(7489):1-17.
[6] Hu Y, Teng C, Yu S, et al. Inonotus obliquus polysaccharide regulates gut microbiota of chronic pancreatitis in mice[J]. AMB Express, 2017, 7(39):1-11.
[7] Chen DL, Yang X, Zheng CQ, et al. Extracts from Hericium erinaceus relieve inflammatory bowel disease by regulating immunity and gut microbiota[J]. Oncotarget, 2017, 8(49); 85838-85857.
[8] Yang XB, Zhao Y, Wang QW, et al. Analysis of the monosaccharide components in Angelica polysaccharides by high performance liquid chromatography[J]. Anal Sci, 2005, 21(10):1177-1180.
[9] Byndloss MX, Olsan EE, Rivera-Chavez F, et al. Microbiota-activated PPAR-gamma signaling inhibits dysbiotic Enterobacteriaceae expansion[J]. Science, 2017, 357(6351):570-575.
[10] Wang K, Bao L, Zhou, N, et al. Structural modification of natural product ganomycin I leading to discovery of a alpha-glucosidase and HMG-CoA reductase dual inhibitor improving obesity and metabolic dysfunction in vivo[J]. J Med Chem, 2018, 61(8):3609-3625.
[11] Cheng HN, Neiss TG. Solution NMR Spectroscopy of Food Polysaccharides[J]. Polym Rev, 2012, 52(2):81-114.
[12] Kumar SA, Ward LC, Brown L. Inulin oligofructose attenuates metabolic syndrome in high-carbohydrate, high-fat diet-fed rats[J]. Brit J Nutr, 2016, 116(9):1502-1511.
[13] Liu F, Prabhakar M, Ju J, et al. Effect of insulin-type fructans on blood lipid profile and glucose level:a systematic review and meta-analysis of randomized controlled trials[J]. Eur J Clin Nut, 2017, 71(1):9-20.
[14] Stratton IM, Adler AI, Neil HAW, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35):prospective observational study[J]. Brit Med J, 2000, 321(7258):405-412.
[15] Rader DJ. New therapeutic approaches to the treatment of dyslipidemia[J]. Cell Metab, 2016, 23(3):405-412.
[16] Stein EA, Mellis S, Yancopoulos GD, et al. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol[J]. N Engl J Med. 2012, 366(12), 1108-1118.
[17] Tarantino G, Saldalamacchia G, Conca P, et al. Non-alcoholic fatty liver disease:further expression of the metabolic syndrome[J]. J Gastroen Hepatol, 2007, 22(3):293-303.
[18] Zhao L, Zhang F, Ding X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J]. Science, 2018, 359(6380):1151-1156.
[19] Chiu CM, Huang WC, Weng SL, et al. Systematic analysis of the association between gut flora and obesity through high-throughput sequencing and bioinformatics approaches[J]. Biomed Res Int, 2014, 2014(906168):1-10.
[20] Koh A, De Vadder F, Kovatcheva-Datchary P, et al. From dietary fiber to host physiology:short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165(6):1332-1345.
[21] Wahlstrom A, Sayin SI, Marschall HU, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J]. Cell Metab, 2016, 24(1):41-50.
[22] Lee CC, Watkins SM, Lorenzo C, et al. Branched-chain amino acids and insulin metabolism:the insulin resistance atherosclerosis study (IRAS)[J]. Diabetes Care, 2016, 39(4):582-588.
[23] Ploger S, Stumpff F, Penner GB, et al. Microbial butyrate and its role for barrier function in the gastrointestinal tract[J]. Ann Ny Acad Sci, 2012, 1258:52-59.
[24] Hotamisligil GS. Inflammation and metabolic disorders[J]. Nature, 2006, 444(7121):860-867.
[25] Mehta NN, McGillicuddy FC, Anderson PD, et al. Experimental endotoxemia induces adipose inflammation and insulin resistance in humans[J]. Diabetes, 2010, 59(1):172-181.
[26] Hu FB, Meigs JB, Li TY, et al. Inflammatory markers and risk of developing type 2 diabetes in women[J]. Diabetes, 2004, 53(3):693-700.
[27] Koh KK, Han SH, Quon MJ. Inflammatory markers and the metabolic syndrome-insights from therapeutic interventions[J]. J Am Coll Cardiol, 2005, 46(11):1978-1985.
[28] Leonel AJ, Alvarez-Leite JI. Butyrate:implications for intestinal function[J]. Curr Opin Clin Nutr, 2012, 15(5):474-479.
[29] Jia XJ, Ma LS, Li P, et al. Prospects of Poria cocos polysaccharides:isolation process, structural features and bioactivities[J]. Trends Food Sci Tech, 2016, 54:52-62.
[30] Wang N, Zhang Y, Wang X, et al. Antioxidant property of water-soluble polysaccharides from Poria cocos Wolf using different extraction methods[J]. Int J Biol Macromol, 2016, 83:103-110.
[31] Bian C, Xie NN, Chen FS. Preparation of bioactive water-soluble pachyman hydrolyzed from sclerotial polysaccharides of Poria cocos by hydrolase[J]. Polym J, 2010, 42(3):256-260.
[32] Kang YZ, Wang WH. Determination of Water-soluble Polysaccharide and alkali-soluble polysaccharide in Poria by near infrared spectroscopy[J]. Chin J of Exp Tradit Med Form, 2016, 22(24):80-83.
[33] Gibson GR, Hutkins R, Sanders ME, et al. The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics[J]. Nat Rev Gastro Hepat, 2017, 14(8):491-502.
[34] Nie Q, Hu J, Gao H, et al. Polysaccharide from Plantago asiatica L. attenuates hyperglycemia, hyperlipidemia and affects colon microbiota in type 2 diabetic rats[J]. Food Hydrocolloids, 2019, 86(SI):34-42.
[35] Everard A, Lazarevic V, Derrien M, et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice[J]. Diabetes, 2011, 60(11):2775-2786.
[36] Chen G., Xie M, Wan P, et al. Fuzhuan brick tea polysaccharides attenuate metabolic syndrome in high-fat diet induced mice in association with modulation in the gut microbiota[J]. J Agric Food Chem, 2018, 66(11):2783-2795.
[37] Neyrinck AM, Possemiers S, Verstraete W, et al. Dietary modulation of clostridial cluster XIVa gut bacteria (Roseburia spp) by chitin-glucan fiber improves host metabolic alterations induced by high-fat diet in mice[J]. J Nutr Biochem, 2012, 23(1):51-59.
[38] Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine[J]. Fems Microbiol Lett, 2009, 294(1):1-8.
[39] Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice[J]. Diabetes, 2008, 57(6):1470-1481.
[40] Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance[J]. Diabetes, 2007, 56(7):1761-177.