CN: 32-1845/R
ISSN: 2095-6975
引用本文:
0
Jiangjiang QIN, Wei WANG, Ruiwen ZHANG. Novel natural product therapeutics targeting both inflammation and cancer[J]. 中国天然药物英文, 2017, 15(6): 401-416

Novel natural product therapeutics targeting both inflammation and cancer

Jiangjiang QIN1, Wei WANG1,2, Ruiwen ZHANG1,2
1 Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA;
2 Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
摘要:
Inflammation is recently recognized as one of the hallmarks of human cancer. Chronic inflammatory response plays a critical role in cancer development, progression, metastasis, and resistance to chemotherapy. Conversely, the oncogenic aberrations also generate an inflammatory microenvironment, enabling the development and progression of cancer. The molecular mechanisms of action that are responsible for inflammatory cancer and cancer-associated inflammation are not fully understood due to the complex crosstalk between oncogenic and pro-inflammatory genes. However, molecular mediators that regulate both inflammation and cancer, such as NF-kB and STAT have been considered as promising targets for preventing and treating these diseases. Recent works have further demonstrated an important role of oncogenes (e.g., NFAT1, MDM2) and tumor suppressor genes (e.g., p53) in cancer-related inflammation. Natural products that target these molecular mediators have shown anticancer and anti-inflammatory activities in preclinical and clinical studies. Sesquiterpenoids (STs), a class of novel plant-derived secondary metabolites have attracted great interest in recent years because of their diversity in chemical structures and pharmacological activities. At present, we and other investigators have found that dimeric sesquiterpenoids (DSTs) may exert enhanced activity and binding affinity to molecular targets due to the increased number of alkylating centers and improved conformational flexibility and lipophilicity. Here, we focus our discussion on the activities and mechanisms of action of STs and DSTs in treating inflammation and cancer as well as their struc-ture-activity relationships.
关键词:    Cancer    Inflammation    Sesquiterpenoid    MDM2    p53    NF-κB   
收稿日期: 2017-03-18
Ruiwen ZHANG,Tel:+1 806-414-9248, FAX:+1 806-356-4034,E-mail:ruiwen.zhang@ttuhsc.edu
相关功能
PDF(830 KB) Free
打印本文
把本文推荐给朋友
作者相关文章
Jiangjiang QIN 在本刊中的所有文章
Wei WANG 在本刊中的所有文章
Ruiwen ZHANG 在本刊中的所有文章
参考文献:
[1] Pesic M, Greten FR. Inflammation and cancer:tissue regeneration gone awry[J]. Curr Opin Cell Biol, 2016, 43:55-61.
[2] Shalapour S, Karin M. Immunity, inflammation, and cancer:an eternal fight between good and evil[J]. J Clin Invest, 2015, 125(9):3347-3355.
[3] Crusz SM, Balkwill FR. Inflammation and cancer:advances and new agents[J]. Nat Rev Clin Oncol, 2015, 12(10):584-596.
[4] Chai EZ, Siveen KS, Shanmugam MK, et al. Analysis of the intricate relationship between chronic inflammation and cancer[J]. Biochem J, 2015, 468(1):1-15.
[5] Fernandes JV, Cobucci RN, Jatoba CA, et al. The role of the mediators of inflammation in cancer development[J]. Pathol Oncol Res, 2015, 21(3):527-534.
[6] Vendramini-Costa DB, Carvalho JE. Molecular link mecha-nisms between inflammation and cancer[J]. Curr Pharm Des, 2012, 18(26):3831-3852.
[7] Baniyash M, Sade-Feldman M, Kanterman J. Chronic inflammation and cancer:suppressing the suppressors[J]. Cancer Immunol Immunother, 2014, 63(1):11-20.
[8] DiDonato JA, Mercurio F, Karin M. NF-kappaB and the link between inflammation and cancer[J]. Immunol Rev, 2012, 246(1):379-400.
[9] Fan Y, Mao R, Yang J. NF-kappaB and STAT3 signaling pathways collaboratively link inflammation to cancer[J]. Protein Cell, 2013, 4(3):176-185.
[10] Pan MG, Xiong Y, Chen F. NFAT gene family in inflammation and cancer[J]. Curr Mol Med, 2013, 13(4):543-554.
[11] Qin JJ, Nag S, Wang W,et al. NFAT as cancer target:mission possible?[J]. Biochim Biophys Acta, 2014, 1846(2):297-311.
[12] Balamurugan K. HIF-1 at the crossroads of hypoxia, inflammation, and cancer[J]. Int J Cancer, 2016, 138(5):1058-1066.
[13] Nag S, Qin J, Srivenugopal KS, et al. The MDM2-p53 pathway revisited[J]. J Biomed Res, 2013, 27(4):254-271.
[14] Qin JJ, Nag S, Voruganti S, et al. Natural product MDM2 inhibitors:anticancer activity and mechanisms of action[J]. Curr Med Chem, 2012, 19(33):5705-5725.
[15] Zhang B, Golding BT, Hardcastle IR. Small-molecule MDM2-p53 inhibitors:recent advances[J]. Future Med Chem, 2015, 7(5):631-645.
[16] Lv PC, Sun J, Zhu HL. Recent advances of p53-MDM2 small molecule inhibitors (2011-present)[J]. Curr Med Chem, 2015, 22(5):618-626.
[17] Ebrahim M, Mulay SR, Anders HJ, et al. MDM2 beyond cancer:podoptosis, development, inflammation, and tissue regen-eration[J]. Histol Histopathol, 2015, 30(11):1271-1282.
[18] Ihling C, Haendeler J, Menzel G, et al. Co-expression of p53 and MDM2 in human atherosclerosis:implications for the regulation of cellularity of atherosclerotic lesions[J]. J Pathol, 1998, 185(3):303-312.
[19] Coindre JM, Hostein I, Maire G, et al. Inflammatory malignant fibrous histiocytomas and dedifferentiated liposarcomas:histo-logical review, genomic profile, and MDM2 and CDK4 status favour a single entity[J]. J Pathol, 2004, 203(3):822-830.
[20] Goodman JE, Hofseth LJ, Hussain SP, et al. Nitric oxide and p53 in cancer-prone chronic inflammation and oxyradical overload disease[J]. Environ Mol Mutagen, 2004, 44(1):3-9.
[21] Mulay SR, Thomasova D, Ryu M, et al. MDM2(murine dou-ble minute-2) links inflammation and tubular cell healing during acute kidney injury in mice[J]. Kidney Int, 2012, 81(12):1199-1211.
[22] Hashimoto T, Ichiki T, Ikeda J, et al. Inhibition of MDM2 attenuates neointimal hyperplasia via suppression of vascular proliferation and inflammation[J]. Cardiovasc Res, 2011, 91(4):711-719.
[23] Thomasova D, Mulay SR, Bruns H, et al. p53-independent roles of MDM2 in NF-kappaB signaling:implications for can-cer therapy, wound healing, and autoimmune diseases[J]. Ne-oplasia, 2012, 14(12):1097-1101.
[24] Ravi R, Mookerjee B, van Hensbergen Y, et al. p53-mediated repression of nuclear factor-kappaB RelA via the transcrip-tional integrator p300[J]. Cancer Res, 1998, 58(20):4531-4536.
[25] Webster GA, Perkins ND. Transcriptional cross talk between NF-kappaB and p53[J]. Mol Cell Biol, 1999, 19(5):3485-3495.
[26] Wadgaonkar R, Phelps KM, Haque Z, et al. CREB-binding protein is a nuclear integrator of nuclear factor-kappaB and p53 signaling[J]. J Biol Chem, 1999, 274(4):1879-1882.
[27] Dey A, Wong ET, Bist P,et al. Nutlin-3 inhibits the NFkappaB pathway in a p53-dependent manner:implications in lung can-cer therapy[J]. Cell Cycle, 2007, 6(17):2178-2185.
[28] Gu L, Findley HW, Zhou M. MDM2 induces NF-kappaB/p65 expression transcriptionally through Sp1-binding sites:a novel, p53-independent role of MDM2 in doxorubicin resistance in acute lymphoblastic leukemia[J]. Blood, 2002, 99(9):3367-3375.
[29] Steinman HA, Burstein E, Lengner C, et al. An alternative splice form of Mdm2 induces p53-independent cell growth and tumorigenesis[J]. J Biol Chem, 2004, 279(6):4877-4886.
[30] Zhiyu W, Wang N, Wang Q,et al. The inflammasome:an emerging therapeutic oncotarget for cancer prevention[J]. On-cotarget, 2016, 7(31):50766-50780.
[31] Saxena M, Yeretssian G. NOD-like receptors:Master regulators of inflammation and cancer[J]. Front Immunol, 2014, 5:327.
[32] Liu ST, Pham H, Pandol SJ, et al. Src as the link between in-flammation and cancer[J]. Front Physiol, 2013, 4:416.
[33] Safe S, Kasiappan R. Natural products as mechanism-based anticancer agents:Sp transcription factors as targets[J]. Phy-tother Res, 2016, 30(11):1723-1732.
[34] Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014[J]. J Nat Prod, 2016, 79(3):629-661.
[35] Bishayee A, Sethi G. Bioactive natural products in cancer pre-vention and therapy:Progress and promise[J]. Semin Cancer Biol, 2016, 40-41:1-3.
[36] Dar KB, Bhat AH, Amin S, et al. Inflammation:A multidimensional insight on natural anti-inflammatory therapeutic compounds[J]. Curr Med Chem, 2016, 23(33):3775-3800.
[37] Ghantous A, Gali-Muhtasib H, Vuorela H, et al. What made sesquiterpene lactones reach cancer clinical trials?[J]. Drug Discov Today, 2010, 15(15-16):668-678.
[38] Chadwick M, Trewin H, Gawthrop F, et al. Sesquiterpenoids lactones:benefits to plants and people[J]. Int J Mol Sci, 2013, 14(6):12780-12805.
[39] Merfort I. Perspectives on sesquiterpene lactones in inflammation and cancer[J]. Curr Drug Targets, 2011, 12(11):1560-1573.
[40] Shi C, Li H, Yang Y, et al. Anti-inflammatory and immunoregulatory functions of artemisinin and its derivatives[J]. Mediators Inflamm, 2015, 2015:435713.
[41] Zhan ZJ, Ying YM, Ma LF, et al. Natural disesquiterpenoids[J]. Nat Prod Rep, 2011, 28(3):594-629.
[42] Chow LM, Chan TH. Novel classes of dimer antitumour drug candidates[J]. Curr Pharm Des, 2009, 15(6):659-674.
[43] ClinicalTrials.gov Identifier:NCT01056029. https://clinicaltrials.gov/, 2017(accessed 27.02.17).
[44] EudraCT Number:2011-002149-36. https://www.clinicaltrialsregister.eu/ctr-search/search, 2017(accessed 27.02.17).
[45] Ghantous A, Sinjab A, Herceg Z, et al. Parthenolide:from plant shoots to cancer roots[J]. Drug Discov Today, 2013, 18(17-18):894-905.
[46] ClinicalTrials.gov Identifier:NCT02304289[EB/OL]. https://clinicaltrials.gov/, 2017(accessed 27.02.17).
[47] ClinicalTrials.gov Identifier:NCT02353026[EB/OL]. https://clinicaltrials.gov/, 2017(accessed 27.02.17).
[48] ClinicalTrials.gov Identifier:NCT02354534[EB/OL]. https://clinicaltrials.gov/, 2017(accessed 27.02.17).
[49] ClinicalTrials.gov Identifier:NCT02633098[EB/OL]. https://clinicaltrials.gov/, 2017(accessed 27.02.17).
[50] ClinicalTrials.gov Identifier:NCT00764036[EB/OL]. https://clinicaltrials.gov/, 2017(accessed 27.02.17).
[51] ClinicalTrials.gov Identifier:NCT02263950[EB/OL]. https://clinicaltrials.gov/, 2017(accessed 27.02.17).
[52] Wang GW, Qin JJ, Cheng XR, et al. Inula sesquiterpenoids:structural diversity, cytotoxicity and anti-tumor activity[J]. Expert Opin Investig Drugs, 2014, 23(3):317-345.
[53] Hua Y, Qin J, Zhang F, et al. Sesquiterpene lactones from Inula helianthus-aquatica[J]. China J Chin Mater Med, 2012, 37(11):1586-1589.
[54] Ren J, Qin JJ, Cheng XR, et al. Five new sesquiterpene lactones from Inula hupehensis[J]. Arch Pharm Res, 2013, 36(11):1319-1325.
[55] Cheng XR, Ren J, Wang CH, et al. Hookerolides A-D, the first naturally occurring C-17-pseudoguaianolides from Inula hookeri[J]. Tetrahedron Lett, 2013, 54(15):1943-1946.
[56] Nie LY, Qin JJ, Huang Y, et al. Sesquiterpenoids from Inula lineariifolia inhibit nitric oxide production[J]. J Nat Prod, 2010, 73(6):1117-1120.
[57] Qin JJ, Jin HZ, Zhu JX, et al. New sesquiterpenes from Inula japonica Thunb. with their inhibitory activities against LPS-induced NO production in RAW264.7 macrophages[J]. Tetrahedron, 2010, 66(48):9379-9388.
[58] Qin JJ, Zhu JX, Zeng Q, et al. Pseudoguaianolides and guaianolides from Inula hupehensis as potential anti-inflammatory agents[J]. J Nat Prod, 2011, 74(9):1881-1887.
[59] Cheng X, Zeng Q, Ren J, et al. Sesquiterpene lactones from Inula falconeri, a plant endemic to the Himalayas, as potential anti-inflammatory agents[J]. Eur J Med Chem, 2011, 46(11):5408-5415.
[60] Zhang SD, Qin JJ, Jin HZ, et al. Sesquiterpenoids from Inula racemosa Hook. f. inhibit nitric oxide production[J]. Planta Med, 2012, 78(2):166-171.
[61] Qin JJ, Zhu JX, Zeng Q, et al. Sesquiterpene lactones from Inula hupehensis inhibit nitric oxide production in RAW264.7 macrophages[J]. Planta Med, 2012, 78(10):1002-1009.
[62] Cheng XR, Zhang SD, Wang CH, et al. Bioactive eudesmane and germacrane derivatives from Inula wissmanniana Hand.-Mazz[J]. Phytochemistry, 2013, 96:214-222.
[63] Qin JJ, Jin HZ, Huang Y, et al. Selective cytotoxicity, inhibition of cell cycle progression, and induction of apoptosis in human breast cancer cells by sesquiterpenoids from Inula lineariifolia Turcz[J]. Eur J Med Chem, 2013, 68:473-481.
[64] Jin HZ, Lee D, Lee JH, et al. New sesquiterpene dimers from Inula britannica inhibit NF-kappaB activation and NO and TNF-alpha production in LPS-stimulated RAW264.7 cells[J]. Planta Med, 2006, 72(1):40-45.
[65] Qin JJ, Jin HZ, Fu JJ, et al. Japonicones A-D, bioactive dimeric sesquiterpenes from Inula japonica Thunb[J]. Bioorg Med Chem Lett, 2009, 19(3):710-713.
[66] Qin JJ, Jin HZ, Zhu JX, et al. Japonicones E-L, dimeric sesquiterpene lactones from Inula japonica Thunb[J]. Planta Med, 2010, 76(3):278-283.
[67] Qin JJ, Wang LY, Zhu JX, et al. Neojaponicone A, a bioactive sesquiterpene lactone dimer with an unprecedented carbon skeleton from Inula japonica[J]. Chem Commun (Camb), 2011, 47(4):1222-1224.
[68] Qin JJ, Huang Y, Wang D, et al. Lineariifolianoids A-D, rare unsymmetrical sesquiterpenoid dimers comprised of xanthane and guaiane framework units from Inula lineariifolia[J]. Rsc Advances, 2012, 2(4):1307-1309.
[69] Zhu JX, Qin JJ, Jin HZ, et al. Japonicones Q-T, four new dimeric sesquiterpene lactones from Inula japonica Thunb.[J]. Fitoterapia, 2013, 84:40-46.
[70] Hu Z, Qin J, Zhang H, et al. Japonicone A antagonizes the activity of TNF-alpha by directly targeting this cytokine and selectively disrupting its interaction with TNF receptor-1[J]. Biochem Pharmacol, 2012, 84(11):1482-1491.
[71] Li X, Yang X, Liu Y, et al. Japonicone A suppresses growth of Burkitt lymphoma cells through its effect on NF-kappaB[J]. Clin Cancer Res, 2013, 19(11):2917-2928.
[72] Qin JJ, Wang W, Voruganti S, et al. Identification of a new class of natural product MDM2 inhibitor:In vitro and in vivo anti-breast cancer activities and target validation[J]. Oncotarget, 2015, 6(5):2623-2640.
[73] Qin JJ, Wang W, Voruganti S, et al. Inhibiting NFAT1 for breast cancer therapy:New insights into the mechanism of action of MDM2 inhibitor JapA[J]. Oncotarget, 2015, 6(32):33106-33119.
[74] Qin JJ, Wang W, Sarkar S, et al. Inulanolide A as a new dual inhibitor of NFAT1-MDM2 pathway for breast cancer therapy[J]. Oncotarget, 2016, 7(22):32566-32578.
[75] Qin JJ, Sarkar S, Voruganti S, et al. Identification of lineariifolianoid A as a novel dual NFAT1 and MDM2 inhibitor for human cancer therapy[J]. J Biomed Res, 2016, 30(4):322-333.
[76] Tu Y. Artemisinin-A gift from traditional Chinese medicine to the world (Nobel Lecture)[J]. Angew Chem Int Ed Engl, 2016, 55(35):10210-10226.
[77] Kong LY, Tan RX. Artemisinin, a miracle of traditional Chinese medicine[J]. Nat Prod Rep, 2015, 32(12):1617-1621.
[78] Wang KS, Li J, Wang Z, et al. Artemisinin inhibits inflammatory response via regulating NF-kappaB and MAPK signaling pathways[J]. Immunopharmacol Immunotoxicol, 2016:1-9.
[79] Xu H, He Y, Yang X, et al. Anti-malarial agent artesunate inhibits TNF-alpha-induced production of proinflammatory cytokines via inhibition of NF-kappaB and PI3 kinase/Akt signal pathway in human rheumatoid arthritis fibroblast-like synoviocytes[J]. Rheumatology (Oxford), 2007, 46(6):920-926.
[80] He Y, Fan J, Lin H, et al. The anti-malaria agent artesunate inhibits expression of vascular endothelial growth factor and hypoxia-inducible factor-1alpha in human rheumatoid arthritis fibroblast-like synoviocyte[J]. Rheumatol Int, 2011, 31(1):53-60.
[81] Hou L, Block KE, Huang H. Artesunate abolishes germinal center B cells and inhibits autoimmune arthritis[J]. PLoS One, 2014, 9(8):e104762.
[82] Guruprasad B, Chaudhary P, Choedon T, et al. Artesunate ameliorates functional limitations in Freund's complete adjuvant-induced monoarthritis in rat by maintaining oxidative homeostasis and inhibiting COX-2 expression[J]. Inflammation, 2015, 38(3):1028-1035.
[83] Zhao YG, Wang Y, Guo Z, et al. Dihydroartemisinin ameliorates inflammatory disease by its reciprocal effects on Th and regulatory T cell function via modulating the mammalian target of rapamycin pathway[J]. J Immunol, 2012, 189(9):4417-4425.
[84] Wei M, Xie X, Chu X, et al. Dihydroartemisinin suppresses ovalbumin-induced airway inflammation in a mouse allergic asthma model[J]. Immunopharmacol Immunotoxicol, 2013, 35(3):382-389.
[85] Yang D, Yuan W, Lv C, et al. Dihydroartemisinin supresses inflammation and fibrosis in bleomycine-induced pulmonary fibrosis in rats[J]. Int J Clin Exp Pathol, 2015, 8(2):1270-1281.
[86] Xu W, Lu C, Yao L, et al. Dihydroartemisinin protects against alcoholic liver injury through alleviating hepatocyte steatosis in a farnesoid X receptor-dependent manner[J]. Toxicol Appl Pharmacol, 2016, 315:23-34.
[87] Das AK. Anticancer effect of antimalarial artemisinin com-pounds[J]. Ann Med Health Sci Res, 2015, 5(2):93-102.
[88] Augustin Y, Krishna S, Kumar D, et al. The wisdom of crowds and the repurposing of artesunate as an anticancer drug[J]. Ecancermedicalscience, 2015, 9:ed50.
[89] Mercer AE, Copple IM, Maggs JL, et al. The role of heme and the mitochondrion in the chemical and molecular mechanisms of mammalian cell death induced by the artemisinin antimalarials[J]. J Biol Chem, 2011, 286(2):987-996.
[90] Berdelle N, Nikolova T, Quiros S, et al. Artesunate induces oxidative DNA damage, sustained DNA double-strand breaks, and the ATM/ATR damage response in cancer cells[J]. Mol Cancer Ther, 2011, 10(12):2224-2233.
[91] Kong R, Jia G, Cheng ZX, et al. Dihydroartemisinin enhances Apo2L/TRAIL-mediated apoptosis in pancreatic cancer cells via ROS-mediated up-regulation of death receptor 5[J]. PLoS One, 2012, 7(5):e37222.
[92] Ba Q, Zhou N, Duan J, et al. Dihydroartemisinin exerts its anticancer activity through depleting cellular iron via transferrin receptor-1[J]. PLoS One, 2012, 7(8):e42703.
[93] Nakase I, Gallis B, Takatani-Nakase T, et al. Transferrin receptor-dependent cytotoxicity of artemisinin-transferrin conjugates on prostate cancer cells and induction of apoptosis[J]. Cancer Lett, 2009, 274(2):290-298.
[94] Hou J, Wang D, Zhang R, et al. Experimental therapy of hepatoma with artemisinin and its derivatives:in vitro and in vivo activity, chemosensitization, and mechanisms of action[J]. Clin Cancer Res, 2008, 14(17):5519-5530.
[95] Chen T, Li M, Zhang R, et al. Dihydroartemisinin induces apoptosis and sensitizes human ovarian cancer cells to carboplatin therapy[J]. J Cell Mol Med, 2009, 13(7):1358-1370.
[96] Ba Q, Duan J, Tian JQ, et al. Dihydroartemisinin promotes angiogenesis during the early embryonic development of zebrafish[J]. Acta Pharmacol Sin, 2013, 34(8):1101-1107.
[97] Jeyadevan JP, Bray PG, Chadwick J, et al. Antimalarial and antitumor evaluation of novel C-10 non-acetal dimers of 10beta-(2-hydroxyethyl)deoxoartemisinin[J]. J Med Chem, 2004, 47(5):1290-1298.
[98] Paik IH, Xie S, Shapiro TA, et al. Second generation, orally active, antimalarial, artemisinin-derived trioxane dimers with high stability, efficacy, and anticancer activity[J]. J Med Chem, 2006, 49(9):2731-2734.
[99] Saikia B, Saikia PP, Goswami A, et al. Synthesis of a novel series of 1,2,3-triazole-containing artemisinin dimers with potent anticancer activity involving huisgen 1,3-dipolar cycloaddition reaction[J]. Synthesis-Stuttgart, 2011(19):3173-3179.
[100] Li X, Zhou Y, Liu Y, et al. Preclinical efficacy and safety assessment of artemisinin-chemotherapeutic agent conjugates for ovarian cancer[J]. EBioMedicine, 2016, 14:44-54.
[101] Li C, Jones AX, Lei X. Synthesis and mode of action of oligomeric sesquiterpene lactones[J]. Nat Prod Rep, 2016, 33(5):602-611.
[102] Wu ZJ, Xu XK, Shen YH, et al. Ainsliadimer A, a new sesquiterpene lactone dimer with an unusual carbon skeleton from Ainsliaea macrocephala[J]. Org Lett, 2008, 10(12):2397-2400.
[103] Li C, Yu X, Lei X. A biomimetic total synthesis of (+)-ainsliadimer A[J]. Org Lett, 2010, 12(19):4284-4287.
[104] Dong T, Li C, Wang X, et al. Ainsliadimer A selectively inhibits IKKalpha/beta by covalently binding a conserved cysteine[J]. Nat Commun, 2015, 6:6522.
[105] Wang Y, Shen YH, Jin HZ, et al. Ainsliatrimers A and B, the first two guaianolide trimers from Ainsliaea fulvioides[J]. Org Lett, 2008, 10(24):5517-5520.
[106] Li C, Dong T, Dian LY, et al. Biomimetic syntheses and structural elucidation of the apoptosis-inducing sesquiterpenoid trimers:(一)-ainsliatrimers A and B[J]. Chem Sci, 2013, 4(3):1163-1167.
[107] Li C, Dong T, Li Q, et al. Probing the anticancer mechanism of (一)-ainsliatrimer A through diverted total synthesis and bioorthogonal ligation[J]. Angew Chem Int Ed Engl, 2014, 53(45):12111-12115.
[108] Wang S, Li J, Sun J, et al. NO inhibitory guaianolide-derived terpenoids from Artemisia argyi[J]. Fitoterapia, 2013, 85:169-175.
[109] Zeng KW, Wang S, Dong X, et al. Sesquiterpene dimer (DSF-52) from Artemisia argyi inhibits microglia-mediated neuroinflammation via suppression of NF-kappaB, JNK/p38 MAPKs and Jak2/Stat3 signaling pathways[J]. Phytomedicine, 2014, 21(3):298-306.
[110] Zeng KW, Wang S, Dong X, et al. Sesquiterpene dimmer (DSF-27) inhibits the release of neuroinflammatory mediators from microglia by targeting spleen tyrosine kinase (Syk) and Janus kinase 2(Jak2):Two major non-receptor tyrosine signaling proteins involved in inflammatory events[J]. Toxicol Appl Pharmacol, 2014, 275(3):244-256.
[111] Maas M, Deters AM, Hensel A. Anti-inflammatory activity of Eupatorium perfoliatum L. extracts, eupafolin, and dimeric guaianolide via iNOS inhibitory activity and modulation of inflammation-related cytokines and chemokines[J]. J Ethnopharmacol, 2011, 137(1):371-381.
[112] Kwon OE, Lee HS, Lee SW, et al. Dimeric sesquiterpenoids isolated from Chloranthus japonicus inhibited the expression of cell adhesion molecules[J]. J Ethnopharmacol, 2006, 104(1-2):270-277.
[113] Wang LJ, Xiong J, Liu ST, et al. Sesquiterpenoids from Chloranthus henryi and their anti-neuroinflammatory activities[J]. Chem Biodivers, 2014, 11(6):919-928.
[114] Yamahara J, Shimoda H, Matsuda H, et al. Potent immunosuppressive principles, dimeric sesquiterpene thioalkaloids, isolated from nupharis rhizoma, the rhizoma of Nuphar pumilum (nymphaeaceae):structure-requirement of nuphar-alkaloid for immunosuppressive activity[J]. Biol Pharm Bull, 1996, 19(9):1241-1243.
[115] Matsuda H, Shimoda H, Yoshikawa M. Dimeric sesquiterpene thioalkaloids with potent immunosuppressive activity from the rhizome of Nuphar pumilum:structural requirements of nuphar alkaloids for immunosuppressive activity[J]. Bioorg Med Chem, 2001, 9(4):1031-1035.
[116] Matsuda H, Morikawa T, Oda M, et al. Potent anti-metastatic activity of dimeric sesquiterpene thioalkaloids from the rhizome of Nuphar pumilum[J]. Bioorg Med Chem Lett, 2003, 13(24):4445-4449.
[117] Matsuda H, Yoshida K, Miyagawa K, et al. Nuphar alkaloids with immediately apoptosis-inducing activity from Nuphar pumilum and their structural requirements for the activity[J]. Bioorg Med Chem Lett, 2006, 16(6):1567-1573.
[118] Ozer J, Eisner N, Ostrozhenkova E, et al. Nuphar lutea thioalkaloids inhibit the nuclear factor kappaB pathway, potentiate apoptosis and are synergistic with cisplatin and etoposide[J]. Cancer Biol Ther, 2009, 8(19):1860-1868.
[119] Korotkov A, Li H, Chapman CW, et al. Total syntheses and biological evaluation of both enantiomers of several hydroxylated dimeric nuphar alkaloids[J]. Angew Chem Int Ed Engl, 2015, 54(36):10604-10607.
[120] Imakura Y, Lee KH, Sims D, et al. Antitumor agents XXVⅢ:Structural elucidation of the novel antitumor sesquiterpene lactone, microlenin, from Helenium microcephalum[J]. J Pharm Sci, 1978, 67(9):1228-1232.
[121] Imakura Y, Lee KH, Sims D, et al. Antitumor agents XXXVI:Structural elucidation of sesquiterpene lactones microhelenins-A, B, and C, microlenin acetate, and plenolin from Helenium microcephalum[J]. J Pharm Sci, 1980, 69(9):1044-1049.
[122] Hall IH, Lee KH, Imakura Y, et al. Antitumor agents LXⅢ:the effects of microlenin on nucleic acid and protein syntheses of Ehrlich ascites cells[J]. J Pharm Sci, 1983, 72(9):1008-1011.
[123] Litaudon M, Bousserouel H, Awang K, et al. A dimeric sesquiterpenoid from a Malaysian Meiogyne as a new inhibitor of Bcl-xL/BakBH3 domain peptide interaction[J]. J Nat Prod, 2009, 72(3):480-483.
[124] Fotsop DF, Roussi F, Leverrier A, et al. Biomimetic total synthesis of meiogynin A, an inhibitor of Bcl-xL and Bak interaction[J]. J Org Chem, 2010, 75(21):7412-7415.
[125] Desrat S, Remeur C, Geny C, et al. From meiogynin A to the synthesis of dual inhibitors of Bcl-xL and Mcl-1 anti-apoptotic proteins[J]. Chem Commun (Camb), 2014, 50(62):8593-8596.
[126] Desrat S, Pujals A, Colas C, et al. Pro-apoptotic meiogynin A derivatives that target Bcl-xL and Mcl-1[J]. Bioorg Med Chem Lett, 2014, 24(21):5086-5088.
[127] Desrat S, Remeur C, Roussi F. Development of an efficient route toward meiogynin A-inspired dual inhibitors of Bcl-xL and Mcl-1 anti-apoptotic proteins[J]. Org Biomol Chem, 2015, 13(19):5520-5531.
[128] Toume K, Takahashi M, Yamaguchi K, et al. Parviflorenes B-F, novel cytotoxic unsymmetrical sesquiterpene-dimers with three backbone skeletons front Curcuma parviflora[J]. Tetrahedron, 2004, 60(48):10817-10824.
[129] Toume K, Sato M, Koyano T, et al. Cytotoxic dimeric sesquiterpenoids from Curcuma parviflora:isolation of three new parviflorenes and absolute stereochemistry of parviflorenes A, B, D, F, and G[J]. Tetrahedron, 2005, 61(28):6700-6706.
[130] Ohtsuki T, Tamaki M, Toume K, et al. A novel sesquiterpenoid dimer parviflorene F induces apoptosis by up-regulating the expression of TRAIL-R2 and a caspase-dependent mechanism[J]. Bioorg Med Chem, 2008, 16(4):1756-1763.
[131] Matsunaga S, Furuya-Suguri H, Nishiwaki S, et al. Differential effects of cryptoporic acids D and E, inhibitors of superoxide anion radical release, on tumor promotion of okadaic acid in mouse skin[J]. Carcinogenesis, 1991, 12(6):1129-1131.
[132] Narisawa T, Fukaura Y, Kotanagi H, et al. Inhibitory effect of cryptoporic acid E, a product from fungus Cryptoporus volvatus, on colon carcinogenesis induced with N-methyl-N-nitrosourea in rats and with 1,2-dimethylhydrazine in mice[J]. Jpn J Cancer Res, 1992, 83(8):830-834.
[133] Bergstrom CA, Yazdanian M. Lipophilicity in drug development:Too much or not enough?[J]. AAPS J, 2016, 18(5):1095-1100.
[134] Kundu JK, Surh YJ. Emerging avenues linking inflammation and cancer[J]. Free Radic Biol Med, 2012, 52(9):2013-2037.
[135] Guven Maiorov E, Keskin O, Gursoy A, et al. The structural network of inflammation and cancer:merits and challenges[J]. Semin Cancer Biol, 2013, 23(4):243-251.

相关文章:
1.YU Qian, ZENG Ke-Wu, MA Xiao-Li, JIANG Yong, TU Peng-Fei, WANG Xue-Mei.Ginsenoside Rk1 suppresses pro-inflammatory responses in lipopolysaccharide-stimulated RAW264.7 cells by inhibiting the Jak2/Stat3 pathway[J]. 中国天然药物, 2017,15(10): 751-757
2.ZHANG Tian-Zhu, YANG Shi-Hai, YAO Jin-Fu, DU Juan, YAN Tian-hua.Sangxingtang inhibits the inflammation of LPS-induced acute lung injury in mice by down-regulating the MAPK/NF-κB pathway[J]. 中国天然药物, 2015,13(12): 889-895