CN: 32-1845/R
ISSN: 2095-6975
引用本文:
0
Pandian Vijayabaskar, Noormohamed Vaseela, Ganapathy Thirumaran. Potential antibacterial and antioxidant properties of a sulfated polysaccharide from the brown marine algae Sargassum swartzii[J]. 中国天然药物英文, 2012, 10(6): 421-428

Potential antibacterial and antioxidant properties of a sulfated polysaccharide from the brown marine algae Sargassum swartzii

Pandian Vijayabaskar1, Noormohamed Vaseela1, Ganapathy Thirumaran2
1 P. G. Research Department of Microbiology, Ayya Nadar Janaki Ammal College(Autonomous), Sivakasi-626 124, Tamil Nadu, India;
2 Institute of Hydrobiology, Key Institute of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institutes, Engineering Research Centre of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, China
摘要:
AIMS: Sulfated polysaccharide extracted from the brown algae Sargassum swartzii was studied for antioxidant potential. METHODS: The extracted sulfated polysaccharide was analyzed for physico-chemical characteristics, TAC, reducing power, free radical scavenging potentials (DPPH, ABTS, H2O2 radical) and antibacterial properties. RESULTS: The extract showed a high percentage of carbohydrate (7.40 ± 0.63)%, followed by sulfate (5.3 ± 1.54)%. The highest antioxidant activity was observed in ABTS (55 ± 3.61)%, followed by H2O2 (47.23 ± 2.81)% and DPPH (25.33 ± 2.52)%; significant differences were observed at (P ≥ 0.05). Among the ten human pathogenic strains tested, E. coli was the more sensitive. The characterization and mobility of the sulfated polysaccharide was examined by the FT-IR spectrum and assayed by agarose gel electrophoresis which showed highest mobility at higher pH buffer in carbonate-bicarbonate (pH 10) buffer. The molecular weight of the sulfated polysaccharide was determined by gradient PAGE and was found to be 50 KDa. Finally, GC-MS analysis revealed the presence of peaks corresponding to dimethyl-4-nitroaniline (26.34%). CONCLUSIONS: It is suggested that the sulfated polysaccharide from Sargassum swartzii could be a better source of natural antioxidant, as well as an antibacterial agent.
关键词:    Sargassum swartzii    Sulfated polysaccharide    Antibacterial    Antioxidant    Characterization   
收稿日期: 2011-10-17
P. Vijayabaskar: Assistant Prof., Tel: 91-9994019069, E-mail: gtmaran_cas@yahoo.com, baski_bos@yahoo.co.in
相关功能
PDF(1063 KB) Free
打印本文
把本文推荐给朋友
作者相关文章
Pandian Vijayabaskar 在本刊中的所有文章
Noormohamed Vaseela 在本刊中的所有文章
Ganapathy Thirumaran 在本刊中的所有文章
参考文献:
[1] Mishra VK, Tennelli F, Ooraikul SPF, et al. Lipids of the red alga Palmaria palmate[J]. Bot Mar, 1993, 36(2):169-174.
[2] Norziah MH, Ching CY. Nutritional composition of edible seaweeds Gracilaria changgi[J]. Food Chem, 2002, 68(1):69-76.
[3] Strayo D, Thomas PAD. Marine algae as sources of antioxidants:A Review[J]. Indian Bull, 2006, 5(1):23-27.
[4] Ye H, Wang K, Zhou C, et al. Purification, antitumor and antioxidant activities in vitro of polysaccharides from the brown seaweed Sargassum pallidum[J]. Food Chem, 2008, 111(2):422-432.
[5] Cumashi A, Ushakova NA, Preobrazhenshya ME, et al. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic and antiadhesive activities of nine different fucoidans from brown seaweed[J]. Glycobiol, 2007, 17(5):541-552.
[6] Lekameera R, Vijayabaskar P, Somasundaram ST. Evaluating antioxidant property of brown Alga Colpomenia sinuosa (DERB.ET SOL)[J]. Afr J Food Sci, 2008, 2(11):126-130.
[7] Chew YL, Lim YY, Omar M, et al. Antioxidant activity of three edible seaweeds from two areas in South East Asia[J]. LWT-Food Sci Technol, 2008, 41(6):1067-1072.
[8] Ghosh T, Chattopadhyay K, Marchal M, et al. Focus on antiviral active sulfated polysaccharides:From structure activity analysis to clinical evaluation[J]. Glycobiol, 2009, 19(1):2-15.
[9] Veeragurunathan V, Geetha T. Screening for antimicrobial activity of marine algae from Gulf of Mannar, Tamil Nadu[J]. Seaweed Res Utiln, 2009, 31(2):151-155.
[10] Thirumaran G, Balaji K, Anantharaman P. Antibacterial and antifungal activities of Seaweed (Gracilaria crassa) from the Gulf of Mannar Biosphere Reserve[J]. J Aquat Biol, 2005, 20(1):167-170.
[11] Thirumaran G, Balaji K, Anantharaman P. Antibacterial and antifungal activities of red alga (Gracilaria edulis) from the Gulf of Mannar Biosphere Reserve[J]. J Aquat Biol, 2005, 20(2):221-222.
[12] Thirumaran G, Vijayabaskar P, Anantharaman P. Antibacterial and antifungal activities of brown marine macro algae (Dictyota dichotoma) from the Gulf of Mannar biosphere reserve[J]. J Environ Ecol, 2005, 23(4):61-65.
[13] Thirumaran G, Anantharaman P. Antibacterial and antifungal activities of seaweed (Hydroclathrus clathratus) from the Gulf of Mannar biosphere reserve[J]. J Environ Ecol, 2005, 24(1):55-58.
[14] Thirumaran G, Anantharaman P. Antibacterial activity of marine macro alga (Caulerpa scalpeliformis) from the Gulf of Mannar biosphere reserve[J]. J Environ Ecol, 2005, 24(2):430-432.
[15] Thirumaran G, Anantharaman P. Antibacterial and antifungal activities of seaweed (Sargassum wightii) from the Gulf of Mannar biosphere reserve[J]. J Ecotoxicol Environ Monitor, 2008, 18(1):39-44.
[16] Thirumaran G, Balaji K, Anantharaman P, Antibacterial and antifungal activities of seaweed (Enteromorpha compressa) from the Gulf of Mannar biosphere reserve[J]. J Ecotoxicol Environ Monitor, 2008, 16(2):52-56.
[17] Vallinayagam K, Arumugam R, Ragupathi Raja Kannan R, et al. Antibacterial activity of some selected seaweeds from Pudumadam coastal regions[J]. Global J Pharmacol, 2009, 3(1):50-52.
[18] Karthikaidevi G, Manivannan K, Thirumaran G, et al. Antibacterial properties of selected green seaweeds from Vedalai Coastal Waters; Gulf of Mannar Marine biosphere reserve[J]. Global J Pharmacol, 2009, 3(2):107-112,
[19] Patel MK, Mulloy B, Gallagker KL, et al. The antimitogenic action of the sulfated polysaccharide sulfated fucan differs from heparin in human vascular smooth muscle cells[J]. Thromb Haemost, 2002, 87:147-154.
[20] Alekseyenko TV, Zhanayeva SY, Vendiktova AA, et al. Antitumor and antimetastatic activity of fucoidan, a sulfated polysaccharide isolated from the Okhotsk sea Fucus evanescens brown alga[J]. Bull Exp Biol Med, 2007, 143(6):730-732.
[21] Tissot B, Danie R. Biological properties of sulfated fucans:The potent inhibiting activity of algal fucoidan against the human complement system[J]. Glycobiol, 2003, 13(12):29-31.
[22] McCornick CJ, Newbold CI, Berendt AR. Sulfated glycoconjugates enhance CD 36-dependent adhesion of Plasmodium falciparum infected erythrocytes to human microvascular endothelial cell[J]. Blood, 2000, 96(1):327-333.
[23] Wang J, Zhang Q, Zhang Z, et al. Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica[J]. Int J Biol Macromol, 2008, 42(2):127-32.
[24] Dastmalchi K, Dorman HJD, Kosar M, et al. Chemical composition and in vitro antioxidant evaluation of a water soluble Moldavian balm (Dracocephalum moldavica L) extract[J]. Food Sci Tech, 2007, 40(2):239-248.
[25] Subash A, Hanumantha RBR, Adoor GS, et al. in vitro antioxidant and in vivo anti inflammatory potential of crude polysaccharide from Turbinaria ornata (Marine Brown Alga)[J]. Food Chem Toxicol, 2010, 48(1):187-192.
[26] Dubois M, Gilles KA, Hamilton JK, et al. Colorimetric method for determination of sugars and related substances[J]. Anal Chem, 1956, 28(3):350-356.
[27] Lloyd AG, Dodgson KS, Price RG, et al. Polysaccharide sulphates[J]. Biochim Biophy Acta, 1961, 1(46):108-115.
[28] Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent[J]. J Bio Chem, 1951, 193(1):265-275.
[29] Mitsuda H, Yuasumoto K, Iwami J. Antioxidation action of indole compounds during the autooxidation of linoleic acid[J]. Eiyo to Shokuryo, 1996, 19(3):210-214.
[30] Yamaguchi T, Takamura H, Matoba T, et al. HPLC method for evaluation of the free radical scavenging activity of foods by using 1, 1-diphenyl-2-picryl hydrozyl[J]. Biosci Biotechnol Biochem, 1998, 62(1):1201-1204.
[31] Blois MS. Antioxidant determinations by the use of a stable free radical[J]. Nature, 1958, 181:1199-1200.
[32] Gulcin T, Irfan KO, Kufrevioglu OM, et al. Antioxidant, antimicrobial, anti-ulcer and analgesic activities of nettle (Urtica dioica L.)[J]. J Ethnopharmacol, 2004, 90(2):205-215.
[33] Re R, Pellegrini N, Proteggente A, et al. Antioxidant activity applying an improved ABTS radical cation decolorizing assay[J]. Free Radic Biol Med, 1999, 26(9):1231-1237.
[34] Vijayabaskar P, Balasubramanian T, Somasundaram ST. Low molecular weight molluscan glycosaminoglycan from bivalve Katelysia opima (Gmelin)[J]. Methods Find Exp Clin Pharmacol, 2008, 30(3):175-180.
[35] Sun T, Ho CT. Antioxidant activities of buckwheat extracts[J]. Food Chem, 2005, 90(4):743-749.
[36] Caroline D, Karthikeyan R, Vijayabaskar P, et al. Abstract A5:Inhibition of tumor cell migration and angiogenesis by sulphated polysaccharides from Sargassum wightii (Greville)[J]. Cancer Prev Res, 2008, 1:doi:10.1158/1940-6207.PREV-08-A5.
[37] Yu PZ, Liu XG, Zhou GF, et al. Antihyperlipidemic effects of different molecular weight sulfated polysaccharides from Ulva pertusa (Chlorophyta)[J]. Pharmacol Res, 2003, 48(1):543-549.
[38] Yu PZ, Zhang QB, Li N, et al. Polysaccharides from Ulva pertusa (Chlorophyta) and preliminary studies on their antihyperlipidemia activity[J]. J Appl Phycol, 2003, 15(1):21-27.
[39] Lekameera R, Vijayabaskar P, Somasundaram ST. Potential antioxidant activity of brown alga Loboohora varie[J]. Seaweed Res Utiln, 2007, 29(2):55-61.
[40] Duarte MER, Cardoso MA, Noseda MD, et al. Structural studies on fucoidans from the brown seaweed Sargassum stenophyllum[J]. Carbohydr Res, 2003, 333(4):281-293.
[41] Ye H, Wang K, Zhou G, et al. Purification, antitumor and antioxidant activities in vitro of polysaccharides from the brown seaweed Sargassum pallidum[J]. Food Chem, 2008, 111(2):428-432.
[42] Tatiana NZ, Nataliya MS, Alexander OC, et al. Water-soluble polysaccharides of some far-eastern brown seaweeds. Distribution, structure, and their dependence on the developmental conditions[J]. J Exp Mar Bio Ecol, 2003, 294(1):1-13.
[43] Cho DM, Kim DS, Lee DS, et al. Trace components and functional saccharides in seaweed. Changes in proximate composition and trace elements according to harvest season and places[J]. Bull Korean Fish Soc, 1995, 28(1):49-59.
[44] Struck BD, Pelzer R, Ostapzuk P, et al. Statistical evaluation of ecosystem properties influencing the intake of As, Cd, Co, Cu, Hg, Mn, Ni, and Zn is seaweed (Fucus vesiculosis) and common mussel (Mytilus edulis)[J]. Sci Total Environ, 1997, 207(1):29-42.
[45] Duan XJ, Zhang WW, Li XM, et al. Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata[J]. Food Chem, 2006, 95(2):37-43.
[46] Rout S, Banerjee R. Free radical scavenging, anti-glycation and tyrosinase inhibition properties of a polysaccharide fraction isolated from the rind from Punica granatum[J]. Bioresour Technol, 2007, 98(16):3159-3163.
[47] Singh N, Rajini PS. Free radical scavenging activity of an aqueous extract of potato peel[J]. Food Chem, 2004, 85(4):611-616.
[48] Athukurake Y, Lee KW, Song CB, et al. Potential antioxidant activity of marine red alga Grateloupia filicina extracts[J]. J Food Lipids, 2003, 10(3):251-265.
[49] Sriwardhana N, Lee KW, Kim SH, et al. Antioxidant activity of Hijikia fusiformis on reactive oxygen species scavenging and lipid peroxidation inhibition[J]. Food Sci Technol Int, 2003, 9(1):33-39.
[50] Gulcin I. Antioxidant and antiradical activities of L-carnitine[J]. Life Sci, 2006, 78(8):803-811.
[51] Jimenez-Excrig A, Jimenez-Jimenez I, Pulido R, et al. Antioxidant activity of fresh and processed edible seaweeds[J]. J Sci Food Agric, 2001, 81(5):530-534.
[52] Ganesan P, Chandini SK, Bhaskar N. Antioxidant properties of methanol extract and its solvent fractions obtained from selected Indian red seaweeds[J]. Bioresour Technol, 2008, 99(8):2717-2723.
[53] Duan XJ, Zhang WW, Li XM, et al. Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata[J]. Food Chem, 2006, 95(1):37-43.
[54] Kumaran A, Karunakaran RJ. in vitro antioxidant properties of methanol extracts of five Phillanthus species from India[J]. LWT-Food Sci Technol, 2007, 40(1):344-352.
[55] Kumar CS, Ganesan P, Bhaskar N. in vitro antioxidant activities of three selected brown seaweeds of India[J]. Food Chem, 2008, 107(2):707-713.
[56] Caccamese S, Azzolina R. Screening for antimicrobrial activities in marine algae from Eastern Sicily[J]. Planta Med, 1979, 37:333-339.
[57] Manivannan K, Karthikaidevi DG, Anantharaman P, et al. Antimicrobial potential of selected brown seaweeds from Vedalai costal waters, Gulf of Mannar[J]. Asian Pac J Trop Biomed, 2011, 1(2):114-120.
[58] Hellio C, Broise DL, Dufosse L, et al. Inhibition of marine bacteria by extracts of macroalgae:potential use for environmentally friendly antifouling paints[J]. Mar Environ Res, 2001, 52(3):231-247.
[59] Dietrich CP, Paiva JF, Moraes CT, et al. Isolation and characterization of a heparin with high anticoagulant activity from Anomalocardia brasiliana[J]. Biochim Biophys Acta, 1985, 843(2):1-7.
[60] Mariana SP, Barbara M. Structure and anticoagulant activity of sulfated fucans[J]. J Biol Chem, 1999, 274(12):7656-7667.
[61] Hong Y, Keqi W, Chunhong Z, et al. Purification, antitumor and antioxidant activities in vitro of polysaccharides from the brown seaweed Sargassum pallidum[J]. Food Chem, 2008, 111:428-432.
[62] Swardeker JS, Sloneker, JH, Jeans AR. Quantitative deter-mination of monosaccharides as their alditol acetates by gas-liquid chromatography[J]. Anal Chem, 1965, 37(12):1602-1604.
[63] Hoebler C, Jean LB, Agnes D, et al. Rapid acid hydrolysis of plant cell wall polysaccharides and simplified quantitative determination of their neutral monosaccharides by gas-liquid chromatography[J]. J Agric Food Chem, 1989, 37(2):360-367.
[64] Dawson R, Mopper K. A note on the losses of monosaccharides, amino sugars and amino acids from extracts during concentration procedures[J]. Anal Biochem, 1978, 84(1):186-190.